Chapter 4 Ranking
In this section, we will consider the Bradley-Terry Model for ranking algorithms in the fixed budget of 10,000 function evaluations per dimension and controlling for noise and the effect of benchmark functions
- RQ3: How can we rank algorithm different optimization algorithms given a budget of 10,000 evaluations per dimension in noisy benchmarks?
4.1 RQ3 Data preparation
We start importing the dataset
<- readr::read_csv('./data/statscomp.csv') dataset
The BT model formulation that we use has a specific data format, where we have one column with algo_0 (with index of each algorithm) another column with algo_1 and a third column with who won (algo 0 or algo 1),
First lets select only the data that we are interested and create ranking by the each run in each group (by the simNumber). To avoid ties (dealing with those on next session) we will rank ties randomly
<- dataset %>%
d1 ::select(Algorithm, CostFunction, SD, Budget=MaxFevalPerDimensions, simNumber, TrueRewardDifference, OptimizationSuccessful) %>%
dplyr::filter(OptimizationSuccessful & Budget==10000 & SD==3.0) %>%
dplyr::select(-Budget, -OptimizationSuccessful, -SD) %>%
dplyr::group_by(CostFunction, simNumber) %>%
dplyr::mutate(rankReward=rank(TrueRewardDifference, ties.method = 'random')) %>%
dplyr::ungroup() %>%
dplyr::select(-TrueRewardDifference) dplyr
kable(dplyr::sample_n(d1,size=10), booktabs=T, format.args = list(scientific = FALSE), digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
::scroll_box(width = "100%") kableExtra
Algorithm | CostFunction | simNumber | rankReward |
---|---|---|---|
NelderMead | Trigonometric1N6 | 2 | 1 |
CMAES | DiscusN2 | 7 | 7 |
SimulatedAnnealing | ChenV | 1 | 7 |
RandomSearch1 | BentCigarN6 | 7 | 4 |
CMAES | Price1 | 8 | 6 |
CMAES | ChenV | 2 | 6 |
CuckooSearch | Shubert | 8 | 4 |
RandomSearch2 | LunacekBiRastriginN6 | 1 | 5 |
SimulatedAnnealing | Mishra7N6 | 8 | 8 |
CMAES | StrechedVSineWave2N | 8 | 3 |
Now to compare the ranks we need to pivot wider the data frame and based on that we will expand to the dataset in the appropriated format
<- d1 %>%
d1_wide ::pivot_wider(names_from = Algorithm,
tidyrvalues_from=rankReward)
kable(dplyr::sample_n(d1_wide,size=10), booktabs=T, format.args = list(scientific = FALSE), digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
::scroll_box(width = "100%") kableExtra
CostFunction | simNumber | NelderMead | PSO | SimulatedAnnealing | CuckooSearch | DifferentialEvolution | RandomSearch1 | RandomSearch2 | CMAES |
---|---|---|---|---|---|---|---|---|---|
SphereN6 | 6 | 8 | 1 | 7 | 6 | 2 | 5 | 4 | 3 |
WhitleyN6 | 2 | 8 | 3 | 4 | 7 | 2 | 6 | 5 | 1 |
Schwefel2d4N6 | 8 | 8 | 3 | 7 | 6 | 2 | 4 | 5 | 1 |
Damavandi | 9 | 8 | 6 | 7 | 1 | 2 | 4 | 3 | 5 |
Shubert | 1 | 8 | 3 | 2 | 7 | 4 | 5 | 6 | 1 |
WhitleyN6 | 9 | 8 | 3 | 7 | 6 | 1 | 4 | 5 | 2 |
Mishra7N6 | 0 | 4 | 1 | 8 | 6 | 3 | 5 | 7 | 2 |
Damavandi | 8 | 8 | 5 | 4 | 7 | 6 | 3 | 1 | 2 |
XinSheYang2N2 | 9 | 6 | 2 | 1 | 4 | 7 | 8 | 3 | 5 |
DiscusN2 | 9 | 8 | 3 | 1 | 6 | 4 | 2 | 5 | 7 |
Now we need to modify this data set and expand it so we have the pairwise comparisons
First let’s get the number of algorithms and create combination of all possible 2 by 2 comparisons without repeating
<- get_index_names_as_array(d1$Algorithm)
algorithms <- length(algorithms)
n_algorithms <- gtools::combinations(n=n_algorithms, r=2, v=seq(1:n_algorithms), repeats.allowed = F) comb
The pairs combinations looks like this (for algo_0 and algo_1):
kable(comb, booktabs=T) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
::scroll_box(width = "100%") kableExtra
1 | 2 |
1 | 3 |
1 | 4 |
1 | 5 |
1 | 6 |
1 | 7 |
1 | 8 |
2 | 3 |
2 | 4 |
2 | 5 |
2 | 6 |
2 | 7 |
2 | 8 |
3 | 4 |
3 | 5 |
3 | 6 |
3 | 7 |
3 | 8 |
4 | 5 |
4 | 6 |
4 | 7 |
4 | 8 |
5 | 6 |
5 | 7 |
5 | 8 |
6 | 7 |
6 | 8 |
7 | 8 |
Note that each row of d_wide will be expanded into 28 rows. Giving a dataset with a total of 8400 rows.
The following code can a bit slow to run due to the double for loops (there is probably a way to vectorize this and make it run faster), but for building this appendix we will not run, instead we will run it once, save this data, and load it when needed. It takes a couple of minutes but if you have a lot of data and algorithms it can easily go for hours
We will use a progress bar to follow the data frame creation.
1- We initialize a tibble data frame
2- First we loop through the wide data frame d1_wide
row by row
3- For each row we will loop through the different combinations in the comb
variable to create the rows of the data frame. We add each row to the initial dataframe
<- progress::progress_bar$new(format = "[:bar] :current/:total (:percent)", total = nrow(d1_wide))
pb
<- dplyr::tribble(~algo0_name, ~algo0, ~algo1_name, ~algo1, ~y, ~simNumber, ~CostFunction)
df_out
for(i in 1:nrow(d1_wide))
{<- d1_wide[i,]
current_row for(j in 1:nrow(comb)){
<- comb[j,]
comb_row
<- algorithms[comb_row[1]]
algo0_name <- comb_row[1]
algo0 <- current_row[[1,algo0_name]]
algo0_rank
<- algorithms[comb_row[2]]
algo1_name <- comb_row[2]
algo1 <- current_row[[1,algo1_name]]
algo1_rank
<- algo1_rank - algo0_rank
diff_rank <- ifelse(diff_rank<0, 1, 0)
y
<- add_row(df_out,
df_out algo0_name=algo0_name,
algo0=algo0,
algo1_name=algo1_name,
algo1=algo1,
y=y,
simNumber=current_row$simNumber,
CostFunction=current_row$CostFunction)
}$tick()
pb
}saveRDS(df_out, file="./data/ranking.RDS")
Adding index for the benchmarks
<- readRDS("./data/ranking.RDS")
df_out $CostFunctionId <- create_index(df_out$CostFunction)
df_out<- get_index_names_as_array(df_out$CostFunction) benchmarks
Visualizing how the data frame looks like
kable(dplyr::sample_n(df_out,size=10), "html", booktabs=T, format.args = list(scientific = FALSE), digits = 3) %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed")) %>%
::scroll_box(width = "100%") kableExtra
algo0_name | algo0 | algo1_name | algo1 | y | simNumber | CostFunction | CostFunctionId |
---|---|---|---|---|---|---|---|
RandomSearch1 | 6 | RandomSearch2 | 7 | 1 | 2 | Trigonometric1N6 | 26 |
CMAES | 1 | PSO | 5 | 0 | 2 | ExponentialN2 | 7 |
CMAES | 1 | RandomSearch2 | 7 | 0 | 1 | Schwefel2d20N2 | 16 |
CuckooSearch | 2 | RandomSearch1 | 6 | 1 | 9 | QingN2 | 13 |
NelderMead | 4 | RandomSearch2 | 7 | 1 | 0 | ChenBird | 2 |
CMAES | 1 | PSO | 5 | 1 | 7 | ZakharovN2 | 30 |
NelderMead | 4 | RandomSearch1 | 6 | 1 | 0 | ChungReynoldsN2 | 4 |
CuckooSearch | 2 | RandomSearch2 | 7 | 1 | 3 | Schwefel2d23N6 | 18 |
DifferentialEvolution | 3 | SimulatedAnnealing | 8 | 0 | 2 | BentCigarN6 | 1 |
PSO | 5 | RandomSearch1 | 6 | 0 | 8 | SalomonN2 | 15 |
4.2 RQ3 Stan model
The Stan model is specified in the file: './stanmodels/rankingmodel_withcluster.stan'
.
print_stan_code('./stanmodels/rankingmodel_withcluster.stan')
// Ranking model with cluster data
// Author: David Issa Mattos
// Date: 1 Oct 2020
//
//
data {
int <lower=1> N_total; // Sample size
int y[N_total]; //variable that indicates which one wins algo0 oor algo 1
int <lower=1> N_algorithm; // Number of algorithms
int <lower=1> algo0[N_total];
int <lower=1> algo1[N_total];
// //To model the influence of each benchmark
int <lower=1> N_bm;
int bm_id[N_total];
}
parameters {
real a_alg[N_algorithm]; //Latent variable that represents the strength value of each algorithm
real<lower=0> s;//std for the random effects
matrix[N_algorithm, N_bm] Uij; //parameters of the random effects for cluster
}
model {
real p[N_total];
a_alg ~ normal(0,2);
s ~ exponential(0.1);
for (i in 1:N_algorithm)
{
for(j in 1:N_bm){
Uij[i, j] ~ normal(0, 1);
}
}
for (i in 1:N_total)
{
p[i] = (a_alg[algo1[i]] + s*Uij[algo1[i], bm_id[i]]) - (a_alg[algo0[i]] + s*Uij[algo0[i], bm_id[i]] ) ;
}
y ~ bernoulli_logit(p);
}
Let’s compile and start sampling with the Stan function. In the data folder you can find the specific data used to fit the model after all transformations "./data/rankingmodel-withcluster-data.RDS"
For computation time sake we are not running this chunk every time we compile this document. From now on we will load from the saved Stan fit object. However, when we change our model or the data we can just run this chunk separately
<- list(
standata N_total=nrow(df_out),
y = as.integer(df_out$y),
N_algorithm = length(algorithms),
algo0=df_out$algo0,
algo1=df_out$algo1,
bm_id=df_out$CostFunctionId,
N_bm=length(benchmarks)
)saveRDS(standata, file = "./data/rankingmodel-withcluster-data.RDS")
<-readRDS("./data/rankingmodel-withcluster-data.RDS")
standata<- stan(file = './stanmodels/rankingmodel_withcluster.stan',
ranking.fit data=standata,
chains = 4,
warmup = 200,
iter = 2000)
saveRDS(ranking.fit, file = "./data/ranking-with-cluster-fit.RDS")
<-readRDS("./data/ranking-with-cluster-fit.RDS")
ranking.fit <- c("a_alg[1]",
a_alg "a_alg[2]",
"a_alg[3]",
"a_alg[4]",
"a_alg[5]",
"a_alg[6]",
"a_alg[7]",
"a_alg[8]")
4.3 RQ3 Diagnosis
::traceplot(ranking.fit, pars=c(a_alg,'s')) rstan
Another diagnosis is to look at the Rhat. If Rhat is greater than 1.05 it indicates a divergence in the chains (they did not mix well). The table below shows a summary of the posteriors. Note that we have several random effects parameter estimates.
kable(summary(ranking.fit)$summary) %>%
kable_styling(bootstrap_options = c('striped',"hover", "condensed" )) %>%
::scroll_box(width = "100%") kableExtra
mean | se_mean | sd | 2.5% | 25% | 50% | 75% | 97.5% | n_eff | Rhat | |
---|---|---|---|---|---|---|---|---|---|---|
a_alg[1] | 1.0350990 | 0.0099375 | 0.7818263 | -0.4889451 | 0.5245045 | 1.0272608 | 1.5465781 | 2.5859266 | 6189.692 | 0.9998847 |
a_alg[2] | -0.4086096 | 0.0097442 | 0.7778534 | -1.9583610 | -0.9293837 | -0.4082742 | 0.1144884 | 1.1325767 | 6372.434 | 0.9996527 |
a_alg[3] | 1.9855326 | 0.0101607 | 0.7833351 | 0.4453243 | 1.4707039 | 1.9837454 | 2.5001817 | 3.5373887 | 5943.627 | 0.9997423 |
a_alg[4] | -2.9812765 | 0.0103527 | 0.7967958 | -4.5108464 | -3.5157775 | -2.9724022 | -2.4480854 | -1.4303523 | 5923.626 | 1.0001171 |
a_alg[5] | 1.5786103 | 0.0100043 | 0.7871080 | 0.0462318 | 1.0553736 | 1.5831165 | 2.0952817 | 3.1108493 | 6190.105 | 0.9997322 |
a_alg[6] | 0.2820188 | 0.0099938 | 0.7906221 | -1.2662524 | -0.2510642 | 0.2702926 | 0.8240528 | 1.8092083 | 6258.569 | 0.9998661 |
a_alg[7] | 0.2511935 | 0.0098370 | 0.7876031 | -1.2844233 | -0.2782489 | 0.2510030 | 0.7890238 | 1.7830516 | 6410.446 | 0.9998134 |
a_alg[8] | -1.6873176 | 0.0100228 | 0.7843961 | -3.2354333 | -2.2125968 | -1.6899210 | -1.1695586 | -0.1369124 | 6124.853 | 0.9997644 |
s | 1.8186475 | 0.0026735 | 0.1185007 | 1.5974726 | 1.7367581 | 1.8133418 | 1.8958155 | 2.0619577 | 1964.622 | 1.0014523 |
Uij[1,1] | 2.7568246 | 0.0068488 | 0.6168957 | 1.5905147 | 2.3314248 | 2.7379874 | 3.1716803 | 4.0020500 | 8113.306 | 0.9999433 |
Uij[1,2] | -2.0117811 | 0.0054712 | 0.4613464 | -2.9433107 | -2.3196997 | -1.9983697 | -1.6997434 | -1.1434574 | 7110.256 | 0.9998827 |
Uij[1,3] | -1.0160761 | 0.0048771 | 0.4231998 | -1.8436816 | -1.2967851 | -1.0130569 | -0.7369512 | -0.1841409 | 7529.647 | 1.0000163 |
Uij[1,4] | 0.3563913 | 0.0048953 | 0.4326111 | -0.4691134 | 0.0613761 | 0.3507387 | 0.6504564 | 1.2140202 | 7809.887 | 0.9998143 |
Uij[1,5] | -0.1472215 | 0.0046975 | 0.4254996 | -0.9748673 | -0.4345510 | -0.1545260 | 0.1406149 | 0.6839556 | 8204.801 | 1.0001625 |
Uij[1,6] | -2.3973034 | 0.0057218 | 0.5129544 | -3.4075592 | -2.7420730 | -2.3964285 | -2.0419191 | -1.4212910 | 8037.052 | 1.0008644 |
Uij[1,7] | -1.4078985 | 0.0049489 | 0.4284437 | -2.2523282 | -1.6954565 | -1.4018171 | -1.1196755 | -0.5791312 | 7495.086 | 1.0005379 |
Uij[1,8] | -0.7674291 | 0.0050325 | 0.4228531 | -1.6081325 | -1.0460228 | -0.7639979 | -0.4808151 | 0.0586314 | 7060.226 | 0.9997273 |
Uij[1,9] | 1.1122770 | 0.0052789 | 0.4955415 | 0.1426358 | 0.7797746 | 1.1032002 | 1.4400893 | 2.1038175 | 8812.076 | 1.0002491 |
Uij[1,10] | 1.3826008 | 0.0056059 | 0.4816300 | 0.4669824 | 1.0563422 | 1.3832680 | 1.7059654 | 2.3426203 | 7381.241 | 1.0003584 |
Uij[1,11] | 1.0280591 | 0.0051854 | 0.4890837 | 0.0807931 | 0.6962308 | 1.0149521 | 1.3558423 | 2.0016199 | 8896.151 | 0.9998362 |
Uij[1,12] | -0.3671331 | 0.0049811 | 0.4098012 | -1.1727494 | -0.6382965 | -0.3626950 | -0.0948469 | 0.4406861 | 6768.464 | 1.0000148 |
Uij[1,13] | 0.7401377 | 0.0051266 | 0.4382564 | -0.0975171 | 0.4425075 | 0.7363724 | 1.0347060 | 1.6099385 | 7307.848 | 1.0004634 |
Uij[1,14] | 1.5977910 | 0.0051860 | 0.4924602 | 0.6419273 | 1.2637216 | 1.5975200 | 1.9360789 | 2.5583447 | 9017.419 | 0.9998956 |
Uij[1,15] | -2.8218921 | 0.0064887 | 0.5298789 | -3.8887420 | -3.1737296 | -2.8081934 | -2.4572131 | -1.8102215 | 6668.585 | 1.0001931 |
Uij[1,16] | -0.3449782 | 0.0049085 | 0.4315929 | -1.1923280 | -0.6397734 | -0.3394316 | -0.0544866 | 0.4954096 | 7731.414 | 1.0001765 |
Uij[1,17] | -0.2023738 | 0.0048264 | 0.4312314 | -1.0474327 | -0.4889775 | -0.1996496 | 0.0878083 | 0.6298177 | 7983.114 | 1.0000599 |
Uij[1,18] | 1.4790742 | 0.0051569 | 0.4860841 | 0.5489460 | 1.1450392 | 1.4778527 | 1.8072492 | 2.4212830 | 8884.640 | 0.9996503 |
Uij[1,19] | 1.1583333 | 0.0055574 | 0.4782449 | 0.2307281 | 0.8415235 | 1.1501705 | 1.4766778 | 2.0871754 | 7405.594 | 0.9997612 |
Uij[1,20] | 2.4816319 | 0.0067180 | 0.5918140 | 1.3702240 | 2.0746444 | 2.4577437 | 2.8679558 | 3.6880249 | 7760.453 | 1.0000875 |
Uij[1,21] | -0.1058211 | 0.0046657 | 0.4166140 | -0.9158034 | -0.3822645 | -0.1072440 | 0.1680613 | 0.7142994 | 7973.206 | 0.9996953 |
Uij[1,22] | 0.7798184 | 0.0050579 | 0.4805069 | -0.1575611 | 0.4546586 | 0.7763659 | 1.1039509 | 1.7378154 | 9025.204 | 0.9999745 |
Uij[1,23] | -0.1487943 | 0.0049382 | 0.4198536 | -0.9823316 | -0.4372502 | -0.1484105 | 0.1368763 | 0.6776679 | 7228.541 | 0.9996262 |
Uij[1,24] | -0.6146686 | 0.0046842 | 0.4090193 | -1.4306410 | -0.8911070 | -0.6109428 | -0.3324223 | 0.1675987 | 7624.646 | 1.0001753 |
Uij[1,25] | -0.8634452 | 0.0050265 | 0.4174748 | -1.6889816 | -1.1475820 | -0.8666918 | -0.5766713 | -0.0342703 | 6898.128 | 0.9999936 |
Uij[1,26] | -0.5845752 | 0.0046152 | 0.4126612 | -1.3717355 | -0.8738679 | -0.5869563 | -0.3024878 | 0.2312067 | 7994.861 | 1.0003718 |
Uij[1,27] | -1.5679692 | 0.0051020 | 0.4514158 | -2.4771515 | -1.8722151 | -1.5655713 | -1.2647471 | -0.7010626 | 7828.501 | 1.0005969 |
Uij[1,28] | 1.6374628 | 0.0054645 | 0.5310866 | 0.6053352 | 1.2810035 | 1.6363277 | 1.9869884 | 2.7069031 | 9445.681 | 0.9998314 |
Uij[1,29] | -0.3994496 | 0.0046884 | 0.4095300 | -1.2048221 | -0.6695395 | -0.4006865 | -0.1184461 | 0.4011749 | 7629.896 | 0.9998467 |
Uij[1,30] | -0.2747694 | 0.0049231 | 0.4199378 | -1.0941249 | -0.5581011 | -0.2793798 | 0.0090081 | 0.5555291 | 7275.939 | 0.9997294 |
Uij[2,1] | -0.9118255 | 0.0050621 | 0.4614396 | -1.8303036 | -1.2250132 | -0.9132414 | -0.5948358 | -0.0307307 | 8309.262 | 1.0002471 |
Uij[2,2] | 0.7360394 | 0.0048665 | 0.4189589 | -0.0820554 | 0.4524802 | 0.7333332 | 1.0246713 | 1.5382982 | 7411.590 | 0.9995565 |
Uij[2,3] | 0.1855127 | 0.0048088 | 0.4110061 | -0.6349756 | -0.0859329 | 0.1803901 | 0.4523463 | 1.0080215 | 7305.198 | 0.9995848 |
Uij[2,4] | -0.1561007 | 0.0052024 | 0.4522417 | -1.0472026 | -0.4601719 | -0.1544331 | 0.1495431 | 0.7313382 | 7556.670 | 1.0000256 |
Uij[2,5] | 0.5686377 | 0.0046033 | 0.4241218 | -0.2657993 | 0.2837517 | 0.5759036 | 0.8515573 | 1.3920251 | 8488.576 | 0.9999016 |
Uij[2,6] | -0.2454198 | 0.0049806 | 0.4431801 | -1.0994024 | -0.5538180 | -0.2392124 | 0.0499348 | 0.6258264 | 7917.615 | 1.0002062 |
Uij[2,7] | 0.3005368 | 0.0047756 | 0.4116191 | -0.5117091 | 0.0234118 | 0.3024190 | 0.5774570 | 1.1091651 | 7429.163 | 1.0007859 |
Uij[2,8] | 0.1038937 | 0.0049971 | 0.4161380 | -0.7240727 | -0.1731505 | 0.1094736 | 0.3813164 | 0.9073294 | 6934.755 | 1.0001131 |
Uij[2,9] | -0.6147997 | 0.0049292 | 0.4569832 | -1.5164804 | -0.9174888 | -0.6101217 | -0.3046565 | 0.2881951 | 8595.067 | 1.0001000 |
Uij[2,10] | -0.0839954 | 0.0047354 | 0.4267774 | -0.9161901 | -0.3756604 | -0.0886199 | 0.2093155 | 0.7524626 | 8122.392 | 1.0000538 |
Uij[2,11] | -0.4093252 | 0.0049963 | 0.4525534 | -1.3046255 | -0.7126732 | -0.4082073 | -0.1030230 | 0.4635166 | 8204.379 | 1.0000034 |
Uij[2,12] | 0.3225484 | 0.0048765 | 0.4059902 | -0.4764681 | 0.0408683 | 0.3262363 | 0.6025226 | 1.0987600 | 6931.354 | 1.0005904 |
Uij[2,13] | 0.3573765 | 0.0051299 | 0.4326365 | -0.4866159 | 0.0707737 | 0.3597662 | 0.6501994 | 1.1939192 | 7112.531 | 1.0000188 |
Uij[2,14] | -0.2901255 | 0.0048619 | 0.4497415 | -1.1704280 | -0.6003112 | -0.2920998 | 0.0169833 | 0.5864769 | 8556.787 | 1.0000544 |
Uij[2,15] | 0.7022558 | 0.0049771 | 0.4222572 | -0.1150877 | 0.4195670 | 0.7010846 | 0.9836285 | 1.5317844 | 7197.845 | 0.9997664 |
Uij[2,16] | 0.6945807 | 0.0049894 | 0.4272260 | -0.1328749 | 0.4047755 | 0.6916793 | 0.9795240 | 1.5469742 | 7331.952 | 0.9998481 |
Uij[2,17] | -0.2185615 | 0.0048720 | 0.4382104 | -1.0984592 | -0.5134980 | -0.2113982 | 0.0781627 | 0.6276812 | 8090.155 | 1.0001446 |
Uij[2,18] | -0.3206384 | 0.0049597 | 0.4692944 | -1.2375007 | -0.6393195 | -0.3115535 | -0.0046453 | 0.6043356 | 8953.384 | 0.9997829 |
Uij[2,19] | 0.4651950 | 0.0046032 | 0.4258835 | -0.3668718 | 0.1747166 | 0.4626164 | 0.7540787 | 1.2940660 | 8559.786 | 0.9998108 |
Uij[2,20] | -0.9697870 | 0.0048787 | 0.4669374 | -1.9028781 | -1.2808106 | -0.9648317 | -0.6616987 | -0.0596379 | 9160.448 | 1.0001722 |
Uij[2,21] | 0.0559637 | 0.0047342 | 0.4247027 | -0.7753249 | -0.2333481 | 0.0550506 | 0.3469145 | 0.8794904 | 8047.959 | 0.9996142 |
Uij[2,22] | -1.3275595 | 0.0051314 | 0.4840651 | -2.2914464 | -1.6502408 | -1.3208356 | -1.0067086 | -0.3925727 | 8899.026 | 0.9995716 |
Uij[2,23] | 0.0839835 | 0.0049526 | 0.4195062 | -0.7455468 | -0.2031012 | 0.0874359 | 0.3604104 | 0.9212649 | 7174.795 | 1.0000113 |
Uij[2,24] | 0.1323553 | 0.0048279 | 0.4103965 | -0.6649977 | -0.1476288 | 0.1315250 | 0.4118975 | 0.9341050 | 7225.840 | 1.0000912 |
Uij[2,25] | 0.3719959 | 0.0049697 | 0.4207036 | -0.4631670 | 0.0958649 | 0.3710583 | 0.6513204 | 1.1997728 | 7166.234 | 0.9997759 |
Uij[2,26] | -0.2964895 | 0.0045362 | 0.4157191 | -1.1284417 | -0.5798734 | -0.3012985 | -0.0138295 | 0.5166549 | 8398.689 | 0.9999439 |
Uij[2,27] | 0.8768972 | 0.0049258 | 0.4350635 | 0.0285952 | 0.5838022 | 0.8779145 | 1.1687862 | 1.7280956 | 7801.049 | 1.0003535 |
Uij[2,28] | -0.8093466 | 0.0049757 | 0.4614552 | -1.7218763 | -1.1187694 | -0.8034172 | -0.4947902 | 0.0785906 | 8601.011 | 0.9998047 |
Uij[2,29] | 0.0758406 | 0.0046521 | 0.4096718 | -0.7413744 | -0.1903349 | 0.0764793 | 0.3478485 | 0.8696867 | 7754.897 | 1.0005194 |
Uij[2,30] | 0.4084189 | 0.0048212 | 0.4170506 | -0.4126051 | 0.1222951 | 0.4151572 | 0.6837595 | 1.2171550 | 7482.812 | 0.9996785 |
Uij[3,1] | 1.0073477 | 0.0056024 | 0.5272701 | -0.0070510 | 0.6585322 | 0.9983542 | 1.3568953 | 2.0481410 | 8857.636 | 1.0004760 |
Uij[3,2] | 0.4494440 | 0.0055275 | 0.4612767 | -0.4445557 | 0.1406110 | 0.4484923 | 0.7448691 | 1.3775233 | 6964.002 | 0.9998257 |
Uij[3,3] | -1.6023314 | 0.0050154 | 0.4282851 | -2.4575609 | -1.8902213 | -1.6014886 | -1.3103747 | -0.7596825 | 7292.256 | 0.9996174 |
Uij[3,4] | 0.3180840 | 0.0047771 | 0.4399761 | -0.5296537 | 0.0255057 | 0.3126647 | 0.6131122 | 1.1813983 | 8482.623 | 1.0000645 |
Uij[3,5] | -0.6641079 | 0.0045801 | 0.4269222 | -1.4850328 | -0.9579079 | -0.6660101 | -0.3689882 | 0.1608834 | 8688.658 | 0.9999617 |
Uij[3,6] | 0.2326513 | 0.0050891 | 0.4413233 | -0.6207068 | -0.0653579 | 0.2305346 | 0.5307241 | 1.1156567 | 7520.371 | 1.0001218 |
Uij[3,7] | -0.9653100 | 0.0047645 | 0.4100695 | -1.7632959 | -1.2479738 | -0.9651005 | -0.6912685 | -0.1526064 | 7407.724 | 1.0001151 |
Uij[3,8] | -1.2842741 | 0.0052116 | 0.4172326 | -2.1196463 | -1.5598092 | -1.2809310 | -1.0027277 | -0.4882449 | 6409.460 | 0.9996239 |
Uij[3,9] | 0.5335109 | 0.0051922 | 0.4905067 | -0.4254207 | 0.2079019 | 0.5362266 | 0.8650988 | 1.4927805 | 8924.692 | 0.9996950 |
Uij[3,10] | 0.1541278 | 0.0050599 | 0.4510499 | -0.7386530 | -0.1543444 | 0.1553414 | 0.4548776 | 1.0559184 | 7946.308 | 1.0004800 |
Uij[3,11] | 1.6121375 | 0.0058877 | 0.5383345 | 0.5858994 | 1.2456417 | 1.5952324 | 1.9730634 | 2.7112403 | 8360.260 | 1.0000395 |
Uij[3,12] | -1.0101996 | 0.0048170 | 0.4106617 | -1.8339218 | -1.2856831 | -1.0116214 | -0.7348951 | -0.2074507 | 7268.152 | 1.0000251 |
Uij[3,13] | -0.5352153 | 0.0051829 | 0.4322857 | -1.3682473 | -0.8216571 | -0.5326458 | -0.2435968 | 0.3136118 | 6956.658 | 1.0005153 |
Uij[3,14] | 1.2543606 | 0.0054120 | 0.4888469 | 0.3119591 | 0.9204890 | 1.2494931 | 1.5864753 | 2.2339286 | 8158.870 | 1.0001832 |
Uij[3,15] | -0.2721445 | 0.0049936 | 0.4223608 | -1.0855721 | -0.5648840 | -0.2729688 | 0.0089531 | 0.5674364 | 7153.844 | 1.0003756 |
Uij[3,16] | -0.0410410 | 0.0047780 | 0.4303627 | -0.8665422 | -0.3387241 | -0.0507189 | 0.2497476 | 0.8206513 | 8112.979 | 0.9998610 |
Uij[3,17] | 1.2865672 | 0.0062544 | 0.5398753 | 0.2606436 | 0.9166113 | 1.2718928 | 1.6461927 | 2.3826536 | 7451.016 | 0.9995780 |
Uij[3,18] | 1.0438479 | 0.0053805 | 0.4852059 | 0.0991268 | 0.7090153 | 1.0447925 | 1.3705275 | 1.9849483 | 8132.276 | 0.9999111 |
Uij[3,19] | 1.0255994 | 0.0056218 | 0.4974867 | 0.0639425 | 0.6872134 | 1.0176544 | 1.3561308 | 1.9942321 | 7830.821 | 1.0000818 |
Uij[3,20] | 0.5705030 | 0.0051968 | 0.4763676 | -0.3519639 | 0.2448030 | 0.5655583 | 0.8977213 | 1.5109338 | 8402.703 | 0.9998861 |
Uij[3,21] | -0.0469374 | 0.0050064 | 0.4346849 | -0.8891189 | -0.3387192 | -0.0530623 | 0.2465612 | 0.8252608 | 7538.760 | 0.9997205 |
Uij[3,22] | 0.8907837 | 0.0054451 | 0.4955141 | -0.0686155 | 0.5476846 | 0.8889436 | 1.2243206 | 1.8669988 | 8281.294 | 0.9996579 |
Uij[3,23] | -0.8606064 | 0.0048879 | 0.4111195 | -1.6729920 | -1.1410176 | -0.8582076 | -0.5856793 | -0.0586748 | 7074.423 | 0.9998325 |
Uij[3,24] | -0.9155754 | 0.0047352 | 0.4078674 | -1.7183378 | -1.1856843 | -0.9162233 | -0.6417720 | -0.1151063 | 7419.371 | 1.0001275 |
Uij[3,25] | -0.7202299 | 0.0050933 | 0.4212868 | -1.5601059 | -1.0034157 | -0.7171780 | -0.4375285 | 0.1005430 | 6841.499 | 0.9999412 |
Uij[3,26] | -0.9790499 | 0.0045789 | 0.4110545 | -1.7859790 | -1.2523830 | -0.9781484 | -0.7031598 | -0.1634507 | 8058.986 | 1.0000878 |
Uij[3,27] | 0.2145017 | 0.0048992 | 0.4430642 | -0.6478430 | -0.0804793 | 0.2087423 | 0.5071635 | 1.0929758 | 8178.624 | 1.0004294 |
Uij[3,28] | 2.0605100 | 0.0062671 | 0.5785991 | 0.9638991 | 1.6584069 | 2.0490457 | 2.4419682 | 3.2332636 | 8523.600 | 0.9999511 |
Uij[3,29] | -1.3502330 | 0.0047122 | 0.4112604 | -2.1525129 | -1.6270620 | -1.3519898 | -1.0796666 | -0.5433599 | 7616.959 | 0.9999308 |
Uij[3,30] | -0.5482071 | 0.0048715 | 0.4214139 | -1.3656972 | -0.8377365 | -0.5534726 | -0.2540713 | 0.2871019 | 7483.374 | 0.9998348 |
Uij[4,1] | -1.0547976 | 0.0057939 | 0.5258410 | -2.1423295 | -1.4061579 | -1.0444071 | -0.7014771 | -0.0599811 | 8237.012 | 0.9997875 |
Uij[4,2] | 1.4152369 | 0.0050122 | 0.4222379 | 0.5847297 | 1.1320818 | 1.4190580 | 1.7011842 | 2.2436516 | 7096.794 | 0.9996116 |
Uij[4,3] | 1.2888832 | 0.0051489 | 0.4264335 | 0.4681648 | 0.9979293 | 1.2831645 | 1.5828093 | 2.1267815 | 6859.112 | 0.9995560 |
Uij[4,4] | -0.2175562 | 0.0055988 | 0.5128904 | -1.2512756 | -0.5593706 | -0.2155310 | 0.1363785 | 0.7734667 | 8391.771 | 0.9999658 |
Uij[4,5] | -0.9999722 | 0.0082125 | 0.6873597 | -2.4298974 | -1.4415019 | -0.9586839 | -0.5131495 | 0.2527938 | 7005.226 | 0.9998558 |
Uij[4,6] | -0.3850099 | 0.0054081 | 0.5058200 | -1.3978102 | -0.7159066 | -0.3739554 | -0.0426153 | 0.5630651 | 8747.817 | 0.9997977 |
Uij[4,7] | 2.2690834 | 0.0051886 | 0.4365670 | 1.4157615 | 1.9724727 | 2.2711768 | 2.5615590 | 3.1315005 | 7079.385 | 1.0000048 |
Uij[4,8] | 1.1511079 | 0.0051838 | 0.4241700 | 0.3032800 | 0.8721010 | 1.1546695 | 1.4351798 | 1.9730284 | 6695.441 | 1.0006260 |
Uij[4,9] | -1.4868073 | 0.0079324 | 0.6467099 | -2.8417259 | -1.8958611 | -1.4631879 | -1.0382503 | -0.3124344 | 6646.675 | 0.9999836 |
Uij[4,10] | 0.8863267 | 0.0052023 | 0.4409030 | 0.0126595 | 0.5910444 | 0.8893569 | 1.1766049 | 1.7544285 | 7182.722 | 1.0005518 |
Uij[4,11] | -1.5339463 | 0.0077762 | 0.6502043 | -2.9039419 | -1.9486211 | -1.5010588 | -1.0846510 | -0.3422617 | 6991.480 | 1.0001814 |
Uij[4,12] | 0.2032391 | 0.0055015 | 0.4590260 | -0.6980710 | -0.1016079 | 0.2084355 | 0.5165290 | 1.0649153 | 6961.560 | 1.0001354 |
Uij[4,13] | -0.3925842 | 0.0060215 | 0.5415076 | -1.4888802 | -0.7477202 | -0.3743811 | -0.0213750 | 0.6247565 | 8087.330 | 1.0003910 |
Uij[4,14] | -1.0686745 | 0.0057736 | 0.5331029 | -2.1423804 | -1.4144230 | -1.0586174 | -0.7113862 | -0.0299121 | 8525.592 | 1.0000143 |
Uij[4,15] | 0.5335171 | 0.0050969 | 0.4502252 | -0.3564267 | 0.2312813 | 0.5306487 | 0.8325837 | 1.4213166 | 7802.747 | 1.0003882 |
Uij[4,16] | -0.5016088 | 0.0057299 | 0.5521439 | -1.6211547 | -0.8615124 | -0.4936333 | -0.1214575 | 0.5467288 | 9285.621 | 0.9999972 |
Uij[4,17] | 0.1705628 | 0.0054261 | 0.4751121 | -0.7500838 | -0.1530714 | 0.1707272 | 0.5002412 | 1.0745915 | 7666.979 | 0.9995502 |
Uij[4,18] | -0.5736415 | 0.0055927 | 0.5318950 | -1.6265162 | -0.9343312 | -0.5703938 | -0.2000789 | 0.4496235 | 9044.941 | 0.9998754 |
Uij[4,19] | 0.2321728 | 0.0049765 | 0.4541364 | -0.6816344 | -0.0712835 | 0.2388763 | 0.5432059 | 1.1044883 | 8327.613 | 0.9997770 |
Uij[4,20] | -1.6276982 | 0.0070903 | 0.6298337 | -2.9424722 | -2.0267361 | -1.6110177 | -1.1951056 | -0.4638435 | 7890.771 | 1.0001433 |
Uij[4,21] | -1.0568413 | 0.0082121 | 0.6954488 | -2.5205506 | -1.4852024 | -1.0267179 | -0.5783466 | 0.2099793 | 7171.753 | 0.9999914 |
Uij[4,22] | -1.6012507 | 0.0063108 | 0.5688484 | -2.7643341 | -1.9668914 | -1.5925988 | -1.2223617 | -0.5185397 | 8125.108 | 0.9997419 |
Uij[4,23] | 0.8565832 | 0.0050033 | 0.4290898 | 0.0053646 | 0.5724052 | 0.8574249 | 1.1540984 | 1.6820064 | 7355.129 | 1.0002642 |
Uij[4,24] | 0.5869816 | 0.0051309 | 0.4326763 | -0.2741647 | 0.2885961 | 0.5883067 | 0.8834859 | 1.4277965 | 7111.227 | 0.9999143 |
Uij[4,25] | 0.3390502 | 0.0052386 | 0.4531598 | -0.5562876 | 0.0367418 | 0.3431145 | 0.6411253 | 1.2120223 | 7482.901 | 0.9996849 |
Uij[4,26] | 1.4815727 | 0.0049017 | 0.4226446 | 0.6749818 | 1.1930830 | 1.4713979 | 1.7658538 | 2.3244273 | 7434.608 | 1.0003777 |
Uij[4,27] | 0.1659433 | 0.0051940 | 0.4600652 | -0.7582899 | -0.1361634 | 0.1733586 | 0.4785447 | 1.0384514 | 7845.866 | 1.0000199 |
Uij[4,28] | -1.2806149 | 0.0065112 | 0.5706343 | -2.4592248 | -1.6526341 | -1.2604375 | -0.8855718 | -0.1926687 | 7680.498 | 1.0004478 |
Uij[4,29] | 0.8940605 | 0.0048851 | 0.4256570 | 0.0509766 | 0.6162184 | 0.8931302 | 1.1736058 | 1.7256979 | 7592.286 | 1.0009941 |
Uij[4,30] | -0.0123213 | 0.0056647 | 0.4860611 | -0.9555250 | -0.3465494 | -0.0018815 | 0.3236089 | 0.9059362 | 7362.537 | 0.9997726 |
Uij[5,1] | 0.1610819 | 0.0054275 | 0.4909976 | -0.8066471 | -0.1726553 | 0.1590742 | 0.4973047 | 1.1202438 | 8183.943 | 1.0000650 |
Uij[5,2] | -0.6879136 | 0.0049420 | 0.4074034 | -1.4862566 | -0.9626568 | -0.6935778 | -0.4132975 | 0.1100455 | 6795.886 | 0.9996164 |
Uij[5,3] | -0.0763661 | 0.0049768 | 0.4293301 | -0.9076048 | -0.3660849 | -0.0797143 | 0.2124873 | 0.7678842 | 7441.954 | 0.9997382 |
Uij[5,4] | 0.2008752 | 0.0049600 | 0.4412798 | -0.6542883 | -0.1016702 | 0.2010888 | 0.4999876 | 1.0749466 | 7915.213 | 1.0001994 |
Uij[5,5] | -0.3791894 | 0.0043556 | 0.4237388 | -1.2022060 | -0.6605014 | -0.3786616 | -0.0887175 | 0.4374964 | 9464.666 | 0.9997955 |
Uij[5,6] | -0.1396903 | 0.0048631 | 0.4298054 | -0.9736264 | -0.4308501 | -0.1412236 | 0.1514906 | 0.7022374 | 7811.186 | 1.0004841 |
Uij[5,7] | -1.1925048 | 0.0049356 | 0.4194588 | -2.0305877 | -1.4782757 | -1.1897950 | -0.9138555 | -0.3823593 | 7222.731 | 1.0006622 |
Uij[5,8] | -0.8229707 | 0.0049344 | 0.4154215 | -1.6529174 | -1.0997631 | -0.8125020 | -0.5490555 | -0.0065503 | 7087.623 | 0.9999104 |
Uij[5,9] | 1.6620525 | 0.0055731 | 0.5287226 | 0.6613757 | 1.2985690 | 1.6572067 | 2.0100333 | 2.7178656 | 9000.311 | 1.0000451 |
Uij[5,10] | 0.5745866 | 0.0053482 | 0.4564669 | -0.3198793 | 0.2746407 | 0.5730956 | 0.8819339 | 1.4688604 | 7284.481 | 0.9997806 |
Uij[5,11] | 0.7421610 | 0.0051307 | 0.4834058 | -0.2162685 | 0.4145210 | 0.7401900 | 1.0622076 | 1.7063505 | 8877.106 | 0.9997100 |
Uij[5,12] | -0.4984991 | 0.0048439 | 0.4109265 | -1.3099250 | -0.7759348 | -0.4925025 | -0.2199153 | 0.2952362 | 7196.885 | 1.0002638 |
Uij[5,13] | 0.0104689 | 0.0050218 | 0.4268828 | -0.8355194 | -0.2790088 | 0.0134855 | 0.3011566 | 0.8343938 | 7225.920 | 1.0001855 |
Uij[5,14] | 0.7068502 | 0.0051046 | 0.4768913 | -0.2217838 | 0.3906000 | 0.6988112 | 1.0216474 | 1.6436442 | 8728.075 | 1.0000220 |
Uij[5,15] | 0.3028525 | 0.0049623 | 0.4293768 | -0.5440520 | 0.0162137 | 0.3035211 | 0.5943020 | 1.1275868 | 7486.961 | 0.9997411 |
Uij[5,16] | 0.6871776 | 0.0049884 | 0.4377777 | -0.1735442 | 0.3843984 | 0.6889344 | 0.9892943 | 1.5299438 | 7701.531 | 0.9997284 |
Uij[5,17] | -0.2144385 | 0.0048584 | 0.4336255 | -1.0704499 | -0.5107113 | -0.2090975 | 0.0789814 | 0.6316863 | 7965.900 | 1.0001001 |
Uij[5,18] | 1.1159882 | 0.0049244 | 0.4791961 | 0.1927222 | 0.7980919 | 1.1176990 | 1.4388016 | 2.0453534 | 9469.342 | 0.9997376 |
Uij[5,19] | -1.2582857 | 0.0048452 | 0.4314994 | -2.1236219 | -1.5442036 | -1.2615177 | -0.9687659 | -0.4378307 | 7931.232 | 0.9998592 |
Uij[5,20] | -0.2284588 | 0.0045918 | 0.4491880 | -1.1084821 | -0.5317220 | -0.2309842 | 0.0753132 | 0.6530863 | 9569.604 | 0.9998917 |
Uij[5,21] | -0.2624154 | 0.0046866 | 0.4258832 | -1.0855067 | -0.5432064 | -0.2705560 | 0.0211492 | 0.5852048 | 8257.903 | 0.9997635 |
Uij[5,22] | 2.5212396 | 0.0070576 | 0.6089231 | 1.3708082 | 2.1078268 | 2.5018016 | 2.9109950 | 3.7519946 | 7444.068 | 0.9998780 |
Uij[5,23] | -0.4108674 | 0.0049068 | 0.4091119 | -1.2175339 | -0.6914275 | -0.4069610 | -0.1268971 | 0.3721501 | 6951.642 | 0.9995629 |
Uij[5,24] | -0.7564929 | 0.0045936 | 0.4066680 | -1.5624618 | -1.0303299 | -0.7567261 | -0.4871905 | 0.0455760 | 7837.313 | 0.9998797 |
Uij[5,25] | -0.3547424 | 0.0050576 | 0.4265396 | -1.1826898 | -0.6438791 | -0.3546845 | -0.0677634 | 0.4885426 | 7112.606 | 0.9997734 |
Uij[5,26] | -0.5484119 | 0.0046012 | 0.4103649 | -1.3405153 | -0.8286629 | -0.5513117 | -0.2747002 | 0.2700166 | 7954.267 | 1.0006088 |
Uij[5,27] | 0.2238965 | 0.0051198 | 0.4396453 | -0.6290873 | -0.0772777 | 0.2267578 | 0.5168140 | 1.1079665 | 7373.867 | 1.0004717 |
Uij[5,28] | 0.2166104 | 0.0051487 | 0.4884776 | -0.7501314 | -0.1182536 | 0.2132065 | 0.5396021 | 1.1746844 | 9001.187 | 0.9998080 |
Uij[5,29] | -0.2949915 | 0.0046411 | 0.4090049 | -1.1099320 | -0.5640623 | -0.2939212 | -0.0247612 | 0.5016446 | 7766.342 | 0.9999574 |
Uij[5,30] | -0.2160241 | 0.0048692 | 0.4178932 | -1.0203039 | -0.5016691 | -0.2152328 | 0.0640756 | 0.5903540 | 7365.686 | 1.0002223 |
Uij[6,1] | -0.6247991 | 0.0050568 | 0.4536326 | -1.5268210 | -0.9293660 | -0.6256297 | -0.3168351 | 0.2622814 | 8047.318 | 1.0000593 |
Uij[6,2] | -0.4187735 | 0.0048960 | 0.4103144 | -1.2329170 | -0.6884198 | -0.4175403 | -0.1399352 | 0.3985669 | 7023.360 | 0.9996310 |
Uij[6,3] | 0.0985780 | 0.0051401 | 0.4209715 | -0.7269067 | -0.1840676 | 0.1003228 | 0.3809159 | 0.9276387 | 6707.564 | 0.9995862 |
Uij[6,4] | 0.2659752 | 0.0049877 | 0.4436955 | -0.6081839 | -0.0374348 | 0.2662519 | 0.5762164 | 1.1168504 | 7913.396 | 1.0002142 |
Uij[6,5] | 0.0299219 | 0.0046911 | 0.4241500 | -0.7971327 | -0.2598001 | 0.0291514 | 0.3223569 | 0.8465939 | 8175.147 | 1.0002137 |
Uij[6,6] | 0.6451811 | 0.0048321 | 0.4292219 | -0.1860810 | 0.3565973 | 0.6461714 | 0.9270589 | 1.4933868 | 7890.377 | 1.0003926 |
Uij[6,7] | 0.2538168 | 0.0046767 | 0.4086395 | -0.5461182 | -0.0309398 | 0.2551826 | 0.5362982 | 1.0505904 | 7634.826 | 1.0003590 |
Uij[6,8] | 0.4274660 | 0.0049731 | 0.4179161 | -0.4025759 | 0.1493242 | 0.4315904 | 0.7056309 | 1.2356792 | 7061.842 | 1.0000938 |
Uij[6,9] | -0.5395962 | 0.0046649 | 0.4501384 | -1.4029731 | -0.8487781 | -0.5398695 | -0.2310737 | 0.3404310 | 9311.042 | 1.0002101 |
Uij[6,10] | -0.8084559 | 0.0048717 | 0.4339794 | -1.6550548 | -1.1022997 | -0.8044388 | -0.5155709 | 0.0343890 | 7935.489 | 1.0003847 |
Uij[6,11] | -0.6109773 | 0.0048729 | 0.4495825 | -1.4976911 | -0.9182983 | -0.6088736 | -0.3072446 | 0.2606366 | 8512.265 | 0.9999330 |
Uij[6,12] | -0.1475828 | 0.0049173 | 0.4079584 | -0.9443651 | -0.4288301 | -0.1429433 | 0.1330495 | 0.6301994 | 6882.900 | 0.9998486 |
Uij[6,13] | 0.7110351 | 0.0050460 | 0.4275339 | -0.1339759 | 0.4235922 | 0.7136160 | 0.9927999 | 1.5569792 | 7178.797 | 1.0007566 |
Uij[6,14] | -0.1825220 | 0.0049111 | 0.4478515 | -1.0738590 | -0.4814001 | -0.1794772 | 0.1207994 | 0.6942991 | 8316.060 | 1.0008052 |
Uij[6,15] | 0.8600299 | 0.0052773 | 0.4319325 | 0.0020161 | 0.5668183 | 0.8583955 | 1.1470909 | 1.7159696 | 6698.982 | 0.9998806 |
Uij[6,16] | 0.5314289 | 0.0049489 | 0.4213566 | -0.2937868 | 0.2466523 | 0.5299128 | 0.8109240 | 1.3717170 | 7249.108 | 0.9998220 |
Uij[6,17] | 0.1982816 | 0.0047830 | 0.4284962 | -0.6233876 | -0.0986099 | 0.1980872 | 0.4916411 | 1.0310962 | 8025.852 | 1.0001748 |
Uij[6,18] | -0.0586963 | 0.0049996 | 0.4614932 | -0.9639492 | -0.3712287 | -0.0581867 | 0.2532450 | 0.8373281 | 8520.296 | 0.9996152 |
Uij[6,19] | -0.0080057 | 0.0049024 | 0.4306798 | -0.8471121 | -0.2934495 | -0.0079689 | 0.2831372 | 0.8383824 | 7717.910 | 1.0000249 |
Uij[6,20] | 0.2211151 | 0.0048568 | 0.4510694 | -0.6568711 | -0.0825393 | 0.2210293 | 0.5232522 | 1.0989568 | 8625.567 | 0.9999425 |
Uij[6,21] | -0.0495386 | 0.0047408 | 0.4168294 | -0.8652290 | -0.3299256 | -0.0516559 | 0.2319948 | 0.7689865 | 7730.764 | 0.9997201 |
Uij[6,22] | -0.3717223 | 0.0053212 | 0.4680513 | -1.2991666 | -0.6835655 | -0.3701338 | -0.0622979 | 0.5494174 | 7737.028 | 0.9996392 |
Uij[6,23] | -0.3540491 | 0.0048657 | 0.4145042 | -1.1688097 | -0.6318058 | -0.3490797 | -0.0734128 | 0.4408301 | 7257.065 | 0.9999383 |
Uij[6,24] | 0.1959043 | 0.0048074 | 0.4080546 | -0.6184873 | -0.0689125 | 0.1926992 | 0.4701189 | 1.0018415 | 7204.835 | 0.9996239 |
Uij[6,25] | 0.4137847 | 0.0050166 | 0.4231668 | -0.4038988 | 0.1272633 | 0.4125788 | 0.7014688 | 1.2340569 | 7115.622 | 0.9996148 |
Uij[6,26] | -0.2363742 | 0.0045652 | 0.4101442 | -1.0430403 | -0.5183638 | -0.2328827 | 0.0350588 | 0.5735567 | 8071.441 | 1.0000106 |
Uij[6,27] | 0.5553174 | 0.0049240 | 0.4363689 | -0.2960677 | 0.2593486 | 0.5495635 | 0.8525548 | 1.4199907 | 7853.639 | 1.0000431 |
Uij[6,28] | -0.4486609 | 0.0048792 | 0.4598944 | -1.3344911 | -0.7507847 | -0.4533277 | -0.1409905 | 0.4652987 | 8884.061 | 0.9996815 |
Uij[6,29] | -0.2704751 | 0.0047704 | 0.4091097 | -1.0781167 | -0.5409605 | -0.2680438 | -0.0000097 | 0.5355939 | 7354.713 | 1.0005713 |
Uij[6,30] | -0.1030006 | 0.0048923 | 0.4204442 | -0.9290630 | -0.3878017 | -0.1069345 | 0.1813979 | 0.7205199 | 7385.697 | 0.9998357 |
Uij[7,1] | -0.6686367 | 0.0050088 | 0.4557680 | -1.5845243 | -0.9699501 | -0.6700753 | -0.3655302 | 0.2316460 | 8279.956 | 1.0004251 |
Uij[7,2] | -0.2566409 | 0.0049552 | 0.4096727 | -1.0817867 | -0.5276101 | -0.2558151 | 0.0157505 | 0.5481599 | 6835.313 | 0.9997654 |
Uij[7,3] | 0.2504599 | 0.0049710 | 0.4217731 | -0.5675008 | -0.0370700 | 0.2473867 | 0.5333353 | 1.0803985 | 7199.055 | 0.9998415 |
Uij[7,4] | 0.6859212 | 0.0050999 | 0.4419246 | -0.1685289 | 0.3834376 | 0.6864736 | 0.9898366 | 1.5408539 | 7508.894 | 0.9999479 |
Uij[7,5] | 0.5750226 | 0.0045292 | 0.4292228 | -0.2560126 | 0.2836859 | 0.5738421 | 0.8653033 | 1.4180462 | 8980.797 | 1.0000379 |
Uij[7,6] | 0.5765717 | 0.0049524 | 0.4323608 | -0.2676764 | 0.2743627 | 0.5737352 | 0.8682920 | 1.4216896 | 7621.919 | 1.0007105 |
Uij[7,7] | 0.1360901 | 0.0049709 | 0.4130857 | -0.6627489 | -0.1475640 | 0.1364560 | 0.4186504 | 0.9491536 | 6905.786 | 1.0008082 |
Uij[7,8] | 0.1086326 | 0.0050418 | 0.4155035 | -0.7096056 | -0.1769173 | 0.1150681 | 0.3988567 | 0.9075658 | 6791.593 | 0.9996560 |
Uij[7,9] | -0.6912170 | 0.0049313 | 0.4570350 | -1.5732257 | -1.0027622 | -0.6937236 | -0.3799759 | 0.1878556 | 8589.708 | 1.0003142 |
Uij[7,10] | -1.2988127 | 0.0051996 | 0.4439050 | -2.1663917 | -1.6026462 | -1.2937276 | -0.9931531 | -0.4350331 | 7288.674 | 1.0002294 |
Uij[7,11] | -0.6481199 | 0.0051177 | 0.4543147 | -1.5596388 | -0.9505406 | -0.6381087 | -0.3428891 | 0.2293004 | 7880.840 | 1.0000041 |
Uij[7,12] | 0.2787110 | 0.0048952 | 0.4131514 | -0.5265008 | -0.0000545 | 0.2783038 | 0.5566697 | 1.0958326 | 7123.327 | 1.0001954 |
Uij[7,13] | 0.6035767 | 0.0051274 | 0.4296069 | -0.2423933 | 0.3187230 | 0.6027932 | 0.8956915 | 1.4443235 | 7020.208 | 1.0003450 |
Uij[7,14] | -0.7790838 | 0.0049209 | 0.4487950 | -1.6773649 | -1.0776840 | -0.7779394 | -0.4793608 | 0.1081412 | 8317.766 | 1.0002652 |
Uij[7,15] | 0.6962269 | 0.0049467 | 0.4255781 | -0.1138881 | 0.4092854 | 0.6967696 | 0.9822225 | 1.5231681 | 7401.711 | 0.9999640 |
Uij[7,16] | 0.3818410 | 0.0048435 | 0.4306669 | -0.4638307 | 0.0867805 | 0.3875423 | 0.6719341 | 1.2334873 | 7906.206 | 0.9999178 |
Uij[7,17] | 0.3570449 | 0.0048365 | 0.4263812 | -0.4960780 | 0.0792652 | 0.3549124 | 0.6429293 | 1.1736216 | 7771.964 | 1.0005065 |
Uij[7,18] | -0.4615351 | 0.0048152 | 0.4633419 | -1.3737511 | -0.7695673 | -0.4553099 | -0.1494646 | 0.4327476 | 9259.286 | 0.9995530 |
Uij[7,19] | -0.2435080 | 0.0047296 | 0.4275416 | -1.0939372 | -0.5311344 | -0.2456423 | 0.0485947 | 0.5775747 | 8171.696 | 0.9998685 |
Uij[7,20] | -0.0021774 | 0.0048818 | 0.4498383 | -0.8823389 | -0.3053032 | 0.0004164 | 0.2954453 | 0.8920188 | 8490.945 | 0.9999999 |
Uij[7,21] | 0.2828488 | 0.0048261 | 0.4227466 | -0.5486289 | -0.0020694 | 0.2827153 | 0.5625054 | 1.1015473 | 7673.025 | 0.9998777 |
Uij[7,22] | 0.2111218 | 0.0053773 | 0.4739329 | -0.7270469 | -0.1077460 | 0.2117789 | 0.5240689 | 1.1405523 | 7768.035 | 0.9999473 |
Uij[7,23] | -0.4348333 | 0.0051215 | 0.4176412 | -1.2611891 | -0.7182458 | -0.4295870 | -0.1606398 | 0.3867412 | 6649.742 | 0.9997878 |
Uij[7,24] | 0.1139629 | 0.0047761 | 0.4086911 | -0.6701003 | -0.1686072 | 0.1173195 | 0.3945152 | 0.9236310 | 7322.104 | 1.0003798 |
Uij[7,25] | 0.3257470 | 0.0048997 | 0.4168573 | -0.5012675 | 0.0457719 | 0.3306800 | 0.6062877 | 1.1562440 | 7238.422 | 1.0002241 |
Uij[7,26] | 0.1063559 | 0.0045177 | 0.4060904 | -0.6927307 | -0.1628985 | 0.1005658 | 0.3767784 | 0.9125101 | 8079.949 | 0.9998306 |
Uij[7,27] | 0.2417210 | 0.0047309 | 0.4304883 | -0.6090570 | -0.0453813 | 0.2394792 | 0.5293926 | 1.0927608 | 8280.224 | 1.0002968 |
Uij[7,28] | -0.8042228 | 0.0049591 | 0.4580414 | -1.7158913 | -1.1046225 | -0.8117571 | -0.4960766 | 0.0870590 | 8531.002 | 0.9998705 |
Uij[7,29] | 0.2501043 | 0.0044318 | 0.4036534 | -0.5421777 | -0.0243821 | 0.2531225 | 0.5273927 | 1.0249491 | 8295.709 | 0.9999089 |
Uij[7,30] | 0.1830485 | 0.0049280 | 0.4130757 | -0.6115548 | -0.0974593 | 0.1832852 | 0.4598386 | 0.9832646 | 7026.119 | 0.9999477 |
Uij[8,1] | -0.6797147 | 0.0052015 | 0.4675453 | -1.5951908 | -0.9912328 | -0.6836537 | -0.3690497 | 0.2368825 | 8079.467 | 1.0000451 |
Uij[8,2] | 0.7530444 | 0.0048968 | 0.4133600 | -0.0688056 | 0.4750426 | 0.7585286 | 1.0313103 | 1.5524937 | 7125.768 | 0.9998760 |
Uij[8,3] | 0.8767076 | 0.0049982 | 0.4194564 | 0.0467125 | 0.5999791 | 0.8764537 | 1.1592419 | 1.7065229 | 7042.932 | 0.9996744 |
Uij[8,4] | -1.3931510 | 0.0060144 | 0.5399612 | -2.4761996 | -1.7511404 | -1.3889283 | -1.0223754 | -0.3514750 | 8060.139 | 0.9997169 |
Uij[8,5] | 1.0293903 | 0.0045726 | 0.4264227 | 0.1928708 | 0.7396803 | 1.0308027 | 1.3155476 | 1.8587793 | 8696.731 | 0.9998040 |
Uij[8,6] | 1.6629825 | 0.0052373 | 0.4351741 | 0.7973662 | 1.3748512 | 1.6663331 | 1.9563794 | 2.5070325 | 6904.170 | 1.0001921 |
Uij[8,7] | 0.6377627 | 0.0048004 | 0.4135980 | -0.1742209 | 0.3574055 | 0.6422804 | 0.9095237 | 1.4354207 | 7423.358 | 1.0006607 |
Uij[8,8] | 1.1000020 | 0.0051864 | 0.4224096 | 0.2546472 | 0.8194431 | 1.1004458 | 1.3877358 | 1.9241408 | 6633.460 | 1.0002896 |
Uij[8,9] | 0.0173745 | 0.0049549 | 0.4526369 | -0.8638235 | -0.2838410 | 0.0200288 | 0.3198568 | 0.8929469 | 8345.180 | 0.9998040 |
Uij[8,10] | -0.8083359 | 0.0050599 | 0.4564115 | -1.7030567 | -1.1153930 | -0.8080988 | -0.4964228 | 0.0680808 | 8136.347 | 0.9997124 |
Uij[8,11] | -0.2558014 | 0.0050491 | 0.4605078 | -1.1509798 | -0.5615123 | -0.2536856 | 0.0486054 | 0.6454935 | 8318.568 | 0.9997518 |
Uij[8,12] | 1.2360673 | 0.0051452 | 0.4127775 | 0.4359177 | 0.9547951 | 1.2324319 | 1.5174841 | 2.0433249 | 6436.101 | 1.0001881 |
Uij[8,13] | -1.4924469 | 0.0062529 | 0.5559413 | -2.6339068 | -1.8553862 | -1.4735235 | -1.1110078 | -0.4568472 | 7904.775 | 0.9999526 |
Uij[8,14] | -1.2421309 | 0.0056253 | 0.5036012 | -2.2304790 | -1.5726332 | -1.2420751 | -0.9088601 | -0.2481939 | 8014.580 | 1.0007184 |
Uij[8,15] | -0.0076941 | 0.0053476 | 0.4471726 | -0.8754602 | -0.3123613 | -0.0002802 | 0.2946612 | 0.8626898 | 6992.616 | 0.9998336 |
Uij[8,16] | -1.3804106 | 0.0059410 | 0.5642882 | -2.5352336 | -1.7493490 | -1.3675735 | -1.0004769 | -0.3081336 | 9021.487 | 0.9997923 |
Uij[8,17] | -1.3944819 | 0.0062225 | 0.5364612 | -2.4952343 | -1.7546625 | -1.3827286 | -1.0274493 | -0.3913429 | 7432.617 | 1.0001927 |
Uij[8,18] | -2.1729524 | 0.0063300 | 0.5818025 | -3.3246618 | -2.5606298 | -2.1556583 | -1.7737270 | -1.0943774 | 8447.919 | 0.9998806 |
Uij[8,19] | -1.3740754 | 0.0058964 | 0.5164762 | -2.4153540 | -1.7141067 | -1.3672165 | -1.0261003 | -0.3724640 | 7672.202 | 1.0001024 |
Uij[8,20] | -0.4537292 | 0.0049502 | 0.4750314 | -1.3906823 | -0.7768226 | -0.4501857 | -0.1315285 | 0.4734747 | 9208.560 | 1.0002069 |
Uij[8,21] | 1.1933456 | 0.0049073 | 0.4256895 | 0.3661585 | 0.9043413 | 1.1891295 | 1.4818523 | 2.0227081 | 7524.770 | 0.9995517 |
Uij[8,22] | -1.0947476 | 0.0054924 | 0.4983996 | -2.0852497 | -1.4272500 | -1.0819927 | -0.7559473 | -0.1399502 | 8234.507 | 0.9995982 |
Uij[8,23] | 1.3536038 | 0.0050467 | 0.4211611 | 0.5327337 | 1.0705955 | 1.3657610 | 1.6351796 | 2.1770506 | 6964.331 | 0.9998251 |
Uij[8,24] | 1.2921909 | 0.0051902 | 0.4152882 | 0.4850221 | 1.0101123 | 1.2892075 | 1.5709785 | 2.1062766 | 6402.122 | 1.0001962 |
Uij[8,25] | 0.4860198 | 0.0049657 | 0.4251098 | -0.3635677 | 0.2099469 | 0.4869041 | 0.7721711 | 1.3240835 | 7328.959 | 0.9998540 |
Uij[8,26] | 1.0710632 | 0.0047021 | 0.4094161 | 0.2780966 | 0.7864531 | 1.0680716 | 1.3409294 | 1.8947021 | 7581.408 | 1.0002360 |
Uij[8,27] | -0.7347508 | 0.0053484 | 0.4636911 | -1.6525125 | -1.0457051 | -0.7355525 | -0.4167170 | 0.1814844 | 7516.329 | 1.0003472 |
Uij[8,28] | -0.5760778 | 0.0049569 | 0.4655035 | -1.4891086 | -0.8932855 | -0.5756722 | -0.2580407 | 0.3286495 | 8819.219 | 0.9999394 |
Uij[8,29] | 1.0755167 | 0.0047433 | 0.4125635 | 0.2759515 | 0.7979133 | 1.0762203 | 1.3591285 | 1.8652500 | 7565.156 | 0.9997998 |
Uij[8,30] | 0.5604330 | 0.0049169 | 0.4190213 | -0.2687412 | 0.2728515 | 0.5647204 | 0.8447049 | 1.3685136 | 7262.553 | 0.9999104 |
lp__ | -3349.4802784 | 0.4482605 | 15.6277068 | -3380.9917464 | -3359.5467733 | -3349.4478159 | -3338.7833075 | -3319.5832264 | 1215.429 | 1.0031396 |
4.4 RQ3 Results and Plots
First let’s get the HPDI interval for the “strength” parameters. Then we will sample the posterior and rank them and present the ranks with their respective posteriors.
<- get_HPDI_from_stanfit(ranking.fit)
hpdi
<- hpdi %>%
hpdi_algorithm ::filter(str_detect(Parameter, "a_alg\\[")) %>%
dplyr::mutate(Parameter=algorithms) #Changing to the algorithms labels
dplyr
<-ggplot(data=hpdi_algorithm, aes(x=Parameter))+
p_alggeom_pointrange(aes(
ymin=HPDI.lower,
ymax=HPDI.higher,
y=Mean))+
labs(y="Estimate", x="Algorithm", title = "HPDI interval of the strength of the algorithms")+
coord_flip()
#+ plot_annotation(title = 'HPDI interval for the algorithms strength') p_alg
Computing the ranks
<- rstan::extract(ranking.fit)
posterior <- as_tibble(posterior$a_alg)
a_alg colnames(a_alg) <- algorithms
#sampling from the posterior
<- dplyr::sample_n(a_alg, size = 1000, replace=T)
s <- dplyr::mutate(s, rown = row_number())
s <- tidyr::pivot_longer(s, cols=all_of(algorithms), names_to = "Algorithm", values_to = "a_alg")
wide_s <- wide_s %>%
rank_df ::group_by(rown) %>%
dplyr::mutate(Rank = rank(-a_alg, ties.method = 'random')) %>%
dplyr::ungroup() %>%
dplyr::select(-a_alg) %>%
dplyr::group_by(Algorithm) %>%
dplyr::summarise(MedianRank = median(Rank),
dplyrVarianceRank = var(Rank)) %>%
::arrange(MedianRank) dplyr
Probability of CMAES to beat Random Search and probability of Differential Evolution beating random search
<- function(x){
inv_logit <-exp(x)/(1+exp(x))
yreturn(y)
}
<- as.data.frame(inv_logit(s$CMAES-s$RandomSearch1))
p_cmaes_beat_rs colnames(p_cmaes_beat_rs) <- c('x')
quantile(p_cmaes_beat_rs$x, 0.05)
5%
0.497772
quantile(p_cmaes_beat_rs$x, 0.95)
95%
0.819959
quantile(p_cmaes_beat_rs$x, 0.5)
50%
0.6769183
#raw data
<- df_out %>%
draw ::filter(algo0_name=='CMAES' & algo1_name=='RandomSearch1')
dplyr
nrow(draw)-sum(draw$y))/nrow(draw) #average of the data (
[1] 0.5833333
#
# p_de_beat_rs <- as.data.frame(inv_logit(s$DifferentialEvolution-s$RandomSearch1))
# colnames(p_de_beat_rs) <- c('x')
# quantile(p_de_beat_rs$x, 0.05)
# quantile(p_de_beat_rs$x, 0.95)
# quantile(p_de_beat_rs$x, 0.5)
we can see that in this case the probability of CMAES beating RS is between 0.50-0.82 with average of 0.67
<- rank_df
rank_df_table colnames(rank_df_table) <- c("Algorithm","Median Rank", "Variance of the Rank")
kable(rank_df_table, "html") %>%
kable_styling(bootstrap_options = c('striped',"hover", "condensed" )) %>%
::scroll_box(width = "100%") kableExtra
Algorithm | Median Rank | Variance of the Rank |
---|---|---|
DifferentialEvolution | 1 | 0.1961962 |
PSO | 2 | 0.3008569 |
CMAES | 3 | 0.3364004 |
RandomSearch1 | 4 | 0.4719429 |
RandomSearch2 | 5 | 0.5139530 |
CuckooSearch | 6 | 0.2099339 |
SimulatedAnnealing | 7 | 0.0069980 |
NelderMead | 8 | 0.0049800 |
<- c("a_alg[1]",
a_alg "a_alg[2]",
"a_alg[3]",
"a_alg[4]",
"a_alg[5]",
"a_alg[6]",
"a_alg[7]",
"a_alg[8]")
<- c(paste(rep('a_',length(algorithms)),algorithms, sep = ""),'s')
rename_pars <-create_table_model(ranking.fit, pars = c(a_alg, 's'), renamepars = rename_pars)
tcolnames(t)<-c("Parameter", "Mean", "HPD low", "HPD high")
saveRDS(t,'./statscomp-paper/tables/datafortables/ranking-par-table.RDS')