R/bpc_exports.R
get_sample_posterior.Rd
Return a data frame with the posterior samples for the parameters of the model
get_sample_posterior(bpc_object, par = "lambda", n = 1000, keep_par_name = T)
bpc_object | a bpc object |
---|---|
par | name of the parameters to predict |
n | how many times are we sampling? Default 1000 |
keep_par_name | keep the parameter name e.g. lambda Graff instead of Graff. Default to T. Only valid for lambda, so we can have better ranks |
Return a data frame with the posterior samples for the parameters. One column for each parameter one row for each sample
# \donttest{ m<-bpc(data = tennis_agresti, player0 = 'player0', player1 = 'player1', result_column = 'y', model_type = 'bt', solve_ties = 'none') #> Running MCMC with 4 parallel chains... #> #> Chain 3 finished in 2.9 seconds. #> Chain 1 finished in 3.0 seconds. #> Chain 2 finished in 3.0 seconds. #> Chain 4 finished in 3.1 seconds. #> #> All 4 chains finished successfully. #> Mean chain execution time: 3.0 seconds. #> Total execution time: 3.4 seconds. s <- get_sample_posterior(m, par='lambda', n=100) print(head(s)) #> lambda[Seles] lambda[Graf] lambda[Sabatini] lambda[Navratilova] #> 1 1.075310 1.321660 0.7996070 0.781848 #> 2 -0.452489 -1.171200 -1.6845700 -0.101250 #> 3 1.139730 1.073020 -0.0639030 -0.351571 #> 4 1.293570 1.635660 -0.0155847 1.124450 #> 5 0.890889 0.867766 -0.4522100 0.897308 #> 6 0.900793 0.942807 0.0115837 1.145680 #> lambda[Sanchez] #> 1 -0.7785050 #> 2 -2.2863900 #> 3 -0.8310020 #> 4 -0.0871835 #> 5 -0.1073960 #> 6 0.3915680 # }