R/bpc_rank_of_players.R
get_rank_of_players_posterior.Rd
To print this object you should remove the last column PosteriorRank since it contain the whole posterior distribution for each case
get_rank_of_players_posterior(bpc_object, n = 1000)
bpc_object | a bpc object |
---|---|
n | Number of times we will sample the posterior |
a matrix containing the posterior distribution of the ranks
# \donttest{ m<-bpc(data = tennis_agresti, player0 = 'player0', player1 = 'player1', result_column = 'y', model_type = 'bt', solve_ties = 'none') #> Running MCMC with 4 parallel chains... #> #> Chain 1 finished in 3.4 seconds. #> Chain 3 finished in 3.4 seconds. #> Chain 4 finished in 3.1 seconds. #> Chain 2 finished in 3.5 seconds. #> #> All 4 chains finished successfully. #> Mean chain execution time: 3.3 seconds. #> Total execution time: 3.6 seconds. rank_m<-get_rank_of_players_posterior(m,n=100) print(rank_m) #> Seles Graf Sabatini Navratilova Sanchez #> [1,] 4 1 2 3 5 #> [2,] 2 1 3 4 5 #> [3,] 1 2 5 3 4 #> [4,] 1 2 4 3 5 #> [5,] 2 1 5 3 4 #> [6,] 4 1 3 2 5 #> [7,] 4 1 3 2 5 #> [8,] 1 2 4 3 5 #> [9,] 3 1 4 2 5 #> [10,] 1 2 4 3 5 #> [11,] 2 1 4 3 5 #> [12,] 4 1 2 3 5 #> [13,] 1 2 4 3 5 #> [14,] 2 1 4 3 5 #> [15,] 3 1 2 4 5 #> [16,] 1 2 4 3 5 #> [17,] 3 1 4 2 5 #> [18,] 1 3 4 2 5 #> [19,] 3 1 4 2 5 #> [20,] 1 2 5 3 4 #> [21,] 1 2 4 3 5 #> [22,] 1 2 5 4 3 #> [23,] 1 3 5 2 4 #> [24,] 1 2 4 3 5 #> [25,] 1 2 4 3 5 #> [26,] 2 1 3 4 5 #> [27,] 2 1 3 4 5 #> [28,] 2 1 4 3 5 #> [29,] 1 2 5 3 4 #> [30,] 1 2 5 3 4 #> [31,] 2 1 4 3 5 #> [32,] 2 1 4 3 5 #> [33,] 1 2 4 3 5 #> [34,] 3 1 4 2 5 #> [35,] 1 2 3 4 5 #> [36,] 2 1 3 5 4 #> [37,] 1 2 4 3 5 #> [38,] 1 3 4 2 5 #> [39,] 1 2 5 3 4 #> [40,] 3 1 4 2 5 #> [41,] 1 2 5 3 4 #> [42,] 1 2 4 3 5 #> [43,] 4 1 3 2 5 #> [44,] 2 1 3 4 5 #> [45,] 1 2 4 3 5 #> [46,] 3 1 2 4 5 #> [47,] 3 1 5 2 4 #> [48,] 1 2 4 3 5 #> [49,] 2 1 5 3 4 #> [50,] 2 1 4 3 5 #> [51,] 3 1 2 4 5 #> [52,] 4 1 3 2 5 #> [53,] 2 1 4 3 5 #> [54,] 3 1 2 4 5 #> [55,] 2 1 4 3 5 #> [56,] 1 2 4 3 5 #> [57,] 2 1 4 3 5 #> [58,] 1 2 4 3 5 #> [59,] 1 2 3 4 5 #> [60,] 2 1 4 3 5 #> [61,] 3 1 4 2 5 #> [62,] 2 1 4 3 5 #> [63,] 1 2 5 3 4 #> [64,] 2 1 3 4 5 #> [65,] 1 2 4 3 5 #> [66,] 2 1 4 3 5 #> [67,] 3 1 4 2 5 #> [68,] 5 1 2 4 3 #> [69,] 2 1 5 3 4 #> [70,] 2 1 3 4 5 #> [71,] 1 2 4 3 5 #> [72,] 2 1 3 4 5 #> [73,] 1 2 3 4 5 #> [74,] 3 1 4 2 5 #> [75,] 1 2 4 3 5 #> [76,] 2 1 5 3 4 #> [77,] 2 1 4 3 5 #> [78,] 2 1 3 4 5 #> [79,] 1 2 4 3 5 #> [80,] 1 2 3 4 5 #> [81,] 2 1 4 3 5 #> [82,] 3 1 4 2 5 #> [83,] 1 2 4 3 5 #> [84,] 2 1 4 3 5 #> [85,] 2 1 4 3 5 #> [86,] 3 1 4 2 5 #> [87,] 2 1 3 4 5 #> [88,] 2 1 3 5 4 #> [89,] 2 1 4 3 5 #> [90,] 1 2 4 3 5 #> [91,] 2 1 4 3 5 #> [92,] 3 2 4 1 5 #> [93,] 3 1 2 4 5 #> [94,] 3 1 4 2 5 #> [95,] 2 1 5 4 3 #> [96,] 1 2 4 3 5 #> [97,] 1 2 4 3 5 #> [98,] 2 1 3 4 5 #> [99,] 2 1 4 3 5 #> [100,] 2 1 3 4 5 # }