To print this object you should remove the last column PosteriorRank since it contain the whole posterior distribution for each case

get_rank_of_players_df(bpc_object, n = 1000)

Arguments

bpc_object

a bpc object

n

Number of times we will sample the posterior

Value

a data frame. This data frame contains the median of the rank, the mean, the standard deviation of the rank

Examples

# \donttest{
m<-bpc(data = tennis_agresti,
player0 = 'player0',
player1 = 'player1',
result_column = 'y',
model_type = 'bt',
solve_ties = 'none')
#> Running MCMC with 4 parallel chains...
#> 
#> Chain 1 finished in 3.8 seconds.
#> Chain 2 finished in 3.9 seconds.
#> Chain 3 finished in 3.8 seconds.
#> Chain 4 finished in 3.8 seconds.
#> 
#> All 4 chains finished successfully.
#> Mean chain execution time: 3.8 seconds.
#> Total execution time: 4.0 seconds.
rank_m<-get_rank_of_players_df(m,n=100)
print(rank_m)
#>     Parameter MedianRank MeanRank   StdRank
#> 1        Graf          1     1.46 0.6422813
#> 2       Seles          2     2.00 0.9211324
#> 3 Navratilova          3     2.96 0.8518548
#> 4    Sabatini          4     3.82 0.7962031
#> 5     Sanchez          5     4.76 0.5148306
# }