
Dissertation presented to the Instituto Tecnológico de Aeronáutica, in partial

fulfillment of the requirements for the degree of Master of Science in the

Program of Electronic Engineering and Computer Science, Area of Devices

and Electronics Systems.

David Issa Mattos

DEVELOPMENT OF A LOW-COST AUTONOMOUS SURFACE

VEHICLE USING THE SOFTWARE MOOS-IVP

Dissertation approved in its final version by signatories below:

Prof. Dr. Cairo Lúcio Nascimento Júnior

Advisor

Prof. Dr. Douglas Soares dos Santos

Co-advisor

Prof. Dr. Luiz Carlos Sandoval Góes

Prorector of Postgraduate Studies and Research

Campo Montenegro
São José dos Campos, SP - Brazil

2016

Cataloging-in Publication Data
Documentation and Information Division

Mattos, David Issa
Development of a low-cost Autonomous Surface Vehicle using the software MOOS-IvP / David Issa

Mattos.
São José dos Campos, 2016.

70f.

Dissertation of Master of Science – Course of Electronic Engineering and Computer Science. Area of
Devices and Electronics Systems – Instituto Tecnológico de Aeronáutica, 2016. Advisor: Prof. Dr. Cairo
Lúcio Nascimento Júnior. Co-advisor: Prof. Dr. Douglas Soares dos Santos.

1. Autonomous Surface Vehicle. 2. Sensor Fusion. 3. Autonomous Navigation. I. Instituto Tecnológico
de Aeronáutica. II. Title.

BIBLIOGRAPHIC REFERENCE

MATTOS, David Issa. Development of a low-cost Autonomous Surface Vehicle using the
software MOOS-IvP. 2016. 70f. Dissertation of Master of Science – Instituto Tecnológico de
Aeronáutica, São José dos Campos.

CESSION OF RIGHTS

AUTHOR’S NAME: David Issa Mattos
PUBLICATION TITLE: Development of a low-cost Autonomous Surface Vehicle using the
software MOOS-IvP.
PUBLICATION KIND/YEAR: Dissertation / 2016

It is granted to Instituto Tecnológico de Aeronáutica permission to reproduce copies of this
dissertation and to loan or to sell copies only for academic and scientific purposes. The
author reserves other publication rights and no part of this dissertation can be reproduced
without the authorization of the author.

David Issa Mattos
Rua Roma 673, Apto. 145D
12.216-510 – São José dos Campos–SP
Brazil

DEVELOPMENT OF A LOW-COST AUTONOMOUS SURFACE
VEHICLE USING THE SOFTWARE MOOS-IVP

David Issa Mattos

Dissertation Committee:

Prof. Dr. Wagner Chiepa Cunha President - ITA
Prof. Dr. Cairo Lúcio Nascimento Júnior Advisor - ITA
Prof. Dr. Douglas Soares dos Santos Co-advisor - ITA
Prof. Dr. Karl Heinz Kienitz Internal Member - ITA
Prof. Dr. Sidney Nascimento Givigi Jr. External Member - RMCC

ITA

To my beloved Erika.

Acknowledgments

Firstly, I would like to thank my advisors Cairo Nascimento Jr. and Douglas dos Santos for

all the patience, availability, guidance and the numerous contributions to this work. Their

expertise and understanding added considerably to my graduate experience at ITA.

Also I would like to express my sincere gratitude to all the other members of the Labora-

tory of Intelligent Machines (LMI), Marcos, José Ricardo, Alessandro Paolone, Kléber Cabral,

Humberto Pessoa and Elton Sbruzzi. Their numerous suggestions and reviews contributed

greatly to this work.

My sincere gratitude to all professors and staff at the Electronic Engineering Division

at ITA. Special thanks to professors Roberto d’Amore, Neusa Oliveira, Karl Kienitz, Wagner

Chiepa, Roberto Kawakami and Irany Azevedo. Your valuable lessons have been crucial for

my journey.

My thanks to the Brazilian Ministry of Education CAPES Foundation for the financial

support.

My deepest gratitude is also addressed at the members of the thesis committee, for their

comments and feedback on my work.

Finally and most importantly, I would like to thank my beloved girlfriend Érika, for being

there and supporting me during every study hour and sleepless night. Also to my family, for

all the love and assistance during so many years.

”Science is the acceptance of what works

and the rejection of what does not.

That needs more courage than we might think.’

— JACOB BRONOWSKI

Resumo

Esse trabalho descreve uma implementação de baixo custo de um veículo autônomo de

superfície. Esse veículo utiliza um software de decisão por comportamento, o MOOS-IvP.

A plataforma utilizada é um barco tipo catamarã, com dois motores de corrente contínua

como sistema de propulsão. Duas abordagens foram feitas e ambas são apresentadas e dis-

cutidas neste trabalho.

Na primeira abordagem foram embarcados no veículo uma placa de processamento com

um microcontrolador da família Arduino, um sensor inercial de baixo custo composto por

acelerômetros, giroscópios e magnetômetros, um receptor GPS e um rádio-modem serial.

O barco comunica-se com a estação de controle em terra enviando dados de telemetria e

recebendo comandos de navegação para os motores. A estação de controle em terra uti-

liza o software MOOS-IvP para implementar os procedimentos de navegação autônoma e os

algoritmos de fusão sensorial utilizando o GPS e os sensores inerciais.

Na segunda abordagem algumas modificações foram feitas no hardware embarcado no

veículo. Foram adicionados um microcomputador de baixo custo (Raspberry Pi 2), um adap-

tador WiFi e uma câmera USB para vigilância. Também foi retirado o rádio-modem serial.

Nesta abordagem a principal diferença é que os procedimentos de navegação autônoma e os

algoritmos de fusão sensorial estão embarcados. Dessa forma o veículo é capaz de continuar

a missão mesmo com a perda de sinal com a estação de controle em terra. Apesar do barco

não depender da estação de controle em terra para operação, foi utilizado uma estação para

inicializar as missões e possibilitar controle manual remoto do veículo. O computador em-

barcado utiliza o MOOS-IvP para implementar a navegação autônoma e os algoritmos de

fusão sensorial. A estação em terra utiliza o software MOOS-IvP para receber os dados de

telemetria do barco e enviar comandos. A abordagem visa a criação de um sistema modu-

lar, possibilitando que o sistema seja expandido e modificado para atender aos requisitos

próprios de cada tipo de missão.

Simulações demonstrando a viabilidade das missões, utilização e ajuste dos algoritmos

de fusão sensorial são apresentadas e discutidas. Resultados experimentais do veículo, em

condições reais, em ambas as abordagens para missões de seguimento de caminho na pre-

sença de obstáculos virtuais são apresentados e discutidos.

Abstract

This work describes the implementation of a low-cost Autonomous Surface Vehicle (ASV)

using a behavior-based software, the MOOS-IvP. The platform used is a catamaran boat

driven by two direct current motors as the propulsion system. Two different designs were

made and both are presented and discussed in this work.

In the first design, the ASV is embedded with a processing board with an Arduino mi-

crocontroller, a low-cost Inertial Measurement Unit (IMU) with accelerometers, gyroscopes

and magnetometers, a GPS receiver and a wireless RF serial modem. The ASV communicates

with a Ground Control Station (GCS) sending telemetry data and receiving navigation com-

mands for the propulsion motors. The GCS uses the MOOS-IvP software to implement the

autonomous navigation procedures and the GPS/Compass/IMU sensor fusion algorithms.

In the second design, modifications were made in the ASV embedded hardware. A low-

cost microcomputer (Raspberry Pi 2), a WiFi adapter and an USB camera for surveillance

were added and the RF serial modem was removed. The main difference between the two

approaches is that in the second approach the autonomous navigation procedures and the

sensor fusion algorithm run embedded in the ASV. Therefore the ASV is capable of perform-

ing a mission even if the communication link with the GCS is lost. Although the ASV does

not require a GCS to operate, a GCS was used to deploy the missions and give manual re-

mote control over the ASV. The embedded computer runs the software MOOS-IvP to im-

plement the autonomous navigation procedures and the GPS/Compass/IMU sensor fusion

algorithm. The GCS uses the software MOOS-IvP and receives telemetry data from the ASV

and sends control commands. This approach aims for a modular system that allows it to be

expanded and modified to meet the custom needs of specialized missions.

Simulations were used to demonstrate the viability of missions, tuning and using of the

sensor fusion algorithms. In both approaches, experimental results in real conditions are

presented and discussed. The experimental and simulation results consist of path following

missions in the presence of virtual obstacles.

List of Figures

FIGURE 2.1 – Backseat driver paradigm (MOOS-IVP, 2016). 22

FIGURE 2.2 – Star topology for the MOOS Software (MOOS-IVP, 2016). 23

FIGURE 2.3 – The IvP helm as a MOOS application (MOOS-IVP, 2016). 24

FIGURE 2.4 – The hierarchical mission structure using the IvP helm application. In

the .bhv it is possible to declare mission modes that uses a set of be-

haviors. The IvP solver resolves possible conflicts (MOOS-IVP, 2016). . . 25

FIGURE 3.1 – A photograph of the catamaran boat used in this dissertation. The em-

bedded hardware is contained inside the metal box. 26

FIGURE 3.2 – A diagram representing the model of the ASV. This diagram shows the

ASV frame axis, the local frame axis, the velocities and drag forces. . . . 28

FIGURE 3.3 – The AVS system: the boat sends telemetry data to the GCS, the GCS

process these data using the software MOOS-IvP and replies with nav-

igation commands. 30

FIGURE 3.4 – Diagram of the ASV embedded hardware in the first design. In blue

is represented the embedded hardware. In red the power source. In

green the communication to the GCS. 32

FIGURE 3.5 – Embedded hardware. 33

FIGURE 3.6 – Arduino embedded software. The software is composed of a single

main loop that controls the motors, reads sensors and sends teleme-

try data. 34

FIGURE 3.7 – MOOS-IvP Apps. In yellow, the custom MOOS Apps developed for the

ASV. In blue, the MOOS Apps available in the MOOS-IvP repository. . . 35

LIST OF FIGURES x

FIGURE 3.8 – This block diagram shows how the Kalman Filter is used for the sensor

fusion. The GCS receives GPS, IMU and compass data (through the

application iSerial), it processes those data and outputs the estimated

position and heading to the pHelmIvp. 36

FIGURE 3.9 – Block diagram of the AVS system: the ASV and the GCS. Both the GCS

and the ASV use the MOOS-IvP software. Communication between the

ASV and the GCS happens through a WiFi link. 37

FIGURE 3.10 – Block diagram of the AVS hardware. In blue is represented the em-

bedded hardware, in yellow the payload computer, in red the power

source. In green is represented the GCS. 38

FIGURE 3.11 – Arduino embedded software. The software is composed of a single

main loop that controls the motors, reads the sensors and communi-

cates with the payload computer. 39

FIGURE 3.12 – MOOS-IvP Apps. In the left there is a diagram of the MOOS apps used

in the GCS, in the right the diagram for the MOOS apps used in the

payload computer. The yellow blocks correspond to the custom MOOS

Apps developed for the ASV. The blue blocks correspond to the MOOS

Apps available in the MOOS-IvP repository. 40

FIGURE 3.13 – This block diagram shows how the Kalman Filter is used for the sensor

fusion. It receives GPS, IMU and compass data (through the applica-

tion iSerial), it processes those data and outputs the estimated position

and heading to the pHelmIvp. 42

FIGURE 4.1 – The blocks diagram for the uKalmanVisual application. In this appli-

cation the MOOS application acts as a bridge for the Python graphical

interface. 53

FIGURE 4.2 – A screen capture of the uKalmanVisual application. The red lines rep-

resent the±3æplots and the black lines represent the error of each vari-

able. If the error stays most of the time in the±3æ region for every value

it can be said that filter converges. 54

FIGURE 5.1 – A screen capture of the pMarineViewer application. This application

allows the user to see visually how the vehicle performs. 58

FIGURE 5.2 – Simulation results obtained using the boat model with the uBoatSim-

ulator application. 59

LIST OF FIGURES xi

FIGURE 5.3 – The Kalman Filter errors in the simulation environment. The blue line

represents the estimated error of the Kalman Filter. The black line rep-

resents the standard deviation (±3æ). This figure presents the same

information that can be seen in real-time using the uKalmanVisual ap-

plication. 60

FIGURE 5.4 – Experimental results using the boat in a lake. 61

FIGURE 5.5 – The Kalman Filter errors in the first design field experiment. The blue

line represents the estimated error of the Kalman Filter. The black line

represents the standard deviation (±3æ). This figure presents the same

information that can be seen in real-time using the uKalmanVisual ap-

plication. 62

FIGURE 5.6 – Experimental results using the ASV in a lake. The vehicle is set to per-

form a mission consisting of several waypoints with virtual obstacles. . 63

FIGURE 5.7 – The Kalman Filter errors in the second design field experiment. The

blue line represents the estimated error of the Kalman Filter. The black

line represents the standard deviation (±3æ). This figure presents the

same information that can be seen in real-time using the uKalmanVi-

sual application. 64

FIGURE 5.8 – A frame from the video stream using the software Motion. This shows

an example of a surveillance ASV. 65

List of Tables

TABLE 3.1 – Lookup table for the motor controller . 27

TABLE 3.2 – Value of the physical parameters . 29

TABLE 3.3 – Embedded hardware components embedded for the first design. 31

TABLE 3.4 – Embedded hardware components embedded 39

TABLE 4.1 – Ellipsoid parameters for the conversion from global to local coordi-

nates using the Earth model WGS-84 . 45

TABLE 4.2 – Manual commands for the pManual module 47

TABLE 5.1 – Mission Summary . 56

TABLE 5.2 – Behaviors parameters . 56

TABLE 5.3 – Covariance values for the GPS, compass and IMU measurement noise . 57

List of Abbreviations and Acronyms

ASV Autonomous Surface Vehicle

AUV Autonomous Underwater Vehicle

GCS Ground Control Station

DC Direct Current

GPS Global Position System

IMU Inertial Measurement Unit

MOOS Mission Oriented Operating Suit

MOOSDB Mission Oriented Operating Suit Database

IvP Interval Programming

metaOS Meta Operating System

OS Operating System

OpenCV Open Computer Vision

RF Radio Frequency

ECEF Earth Centered Earth Fixed

SVN Apache Subversion

List of Symbols

Earth Semi-major axis a

Earth Semi-minor axis b

Latitude ∏

Longitude ¡

Altitude relative to sea level h

Flattening f

First eccentricity e

Normal length N

Drag forces constants Kx , Ky and Kz

Propulsion force Fp

Angular velocity wz

Velocities in the vehicle frame Vbx and Vby

Positions in the local frame Px and Py

Heading angle √

Inertial moment J

ASV mass m

Semi-lateral distance d

Contents

1 INTRODUCTION . 17

1.1 Motivation . 17

1.2 Related Work . 18

1.3 Research Scope . 20

1.4 Dissertation Outline . 20

2 THE MOOS-IVP SOFTWARE . 21

2.1 Introduction . 21

2.2 The backseat driver paradigm . 22

2.3 The Mission Oriented Operating Suite - MOOS 22

2.4 The IvP helm application . 23

2.5 Remarks . 24

3 THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 26

3.1 The nautical structure and mathematical model 26

3.2 A first approach to the ASV . 29

3.2.1 Hardware Modifications . 29

3.2.2 Embedded Software . 31

3.2.3 The MOOS-IvP software . 33

3.2.4 Remarks on the design . 35

3.3 The second approach to the ASV: the modular design 36

3.3.1 Hardware Modifications . 37

3.3.2 Embedded Software . 39

3.3.3 The MOOS-IvP software in the payload computer and in the GCS 39

CONTENTS xvi

3.3.4 The Surveillance Software for the USB Camera 42

3.3.5 Remarks on the design . 43

4 THE DEVELOPED MOOS-IVP MODULES . 44

4.1 The pControl Application . 44

4.2 The pGeodesy Application . 44

4.3 The iSerial Application . 46

4.4 The pManual Application . 46

4.5 The pKalmanSensorFusion . 47

4.5.1 The Extended Kalman Filter . 48

4.5.2 Obtaining the discrete Kalman Filter dynamic matrices 51

4.6 The uKalmanVisual Application . 52

4.7 The uBoatSimulator Application . 53

5 RESULTS . 55

5.1 The missions . 55

5.2 Tuning the Kalman Filter . 57

5.3 Simulation Results . 58

5.4 Experimental Results for the first design . 61

5.5 Experimental Results for the second (modular) design 63

6 FINAL REMARKS . 66

6.1 Conclusion . 66

6.2 Future Works . 67

BIBLIOGRAPHY . 68

1 Introduction

1.1 Motivation

The use of autonomous surface vehicles (ASV) and autonomous underwater vehicles

(AUV) are continuously drawing attention in the world. The demands for ASV and AUV meet

a wide range of applications including:

• environmental monitoring, such as water quality sampling (AUTOMARINESYS, 2016; BLUEFIN,

2016),

• coastal surveillance (CLEARPATH, 2016),

• autonomous transportation (ASVGLOBAL, 2016),

• marine targets for naval gunnery training (ASVGLOBAL, 2016),

• autonomous tow boat (ASVGLOBAL, 2016),

• automatic docking,

• search and rescue missions,

• mine counter measurements (DJAPIC; NAD, 2010).

Some of those companies provide collaborative solutions to enhance their autonomous

services (ASVGLOBAL, 2016; AUTOMARINESYS, 2016; CLEARPATH, 2016). However, commercial

solutions have costs in the order of tens of thousands of dollars.

Since Brazil has more than 42,000 km of rivers extension (ANTAQ, 2007), the use of ASVs

can provide a cost effective way to monitor environment and water quality in rivers and

water supply dams. In military missions, ASVs can be used for surveillance in difficult navi-

gation areas for larger boats, and in human-life risk situations. Furthermore, the use of col-

laborative ASVs in missions can make it possible to explore a larger area in the same amount

of time.

The development of low-cost ASVs can be very useful in terms of exploring and monitor-

ing the large Brazilian river area.

CHAPTER 1. INTRODUCTION 18

1.2 Related Work

The development of an ASV provides the opportunity to create new combinations of

hardware components and software interfaces with an autonomous software library. Some

interesting characteristics that allow vehicles to operate as autonomous agents in dynamic

environments are (SETO, 2012; KEMNA et al., 2011):

• adaptability: ability to adjust itself based on the environment, such as changes in cur-

rents or higher energy consumption than expected,

• capability to perform complex missions,

• re-planning a mission because a member of the cooperative team is no longer in com-

munication,

• self-sufficiency: ability to navigate without assistance during extended periods of time.

In the vehicle and software design, considerations such as cost and development time

should be taken in account. As new vehicles are being developed, collaborative missions

running vehicles from multiple developers and with different features require a platform-

independent framework. The possibility of using heterogeneous vehicles should be consid-

ered, as the cost of redesigning a custom autonomous software for each vehicle might be

prohibitive.

The use of a robotic meta-operating systems reduces greatly the development effort and

cost. In (MADDEN, 2013), there is an extensive analysis of several robotic meta-operating sys-

tems (metaOS) for autonomous underwater vehicles as well as several vehicles simulators.

This study was intended to select a robotics metaOS for the Australian Navy AUVs. This work

evaluates the metaOS in several levels, such as the underlying operating system, abstrac-

tion of low-level device drivers, number of libraries, computer languages, open source code,

among others features. This work evaluated the following metaOS:

• MOOS (Mission Oriented Operating Suit) (MOOS, 2016),

• ROS (Robot Operating System) (ROS, 2016),

• Player (PLAYER, 2016),

• ERSP Robotics Development Platform (ERSP, 2016),

• URBI (Universal Body Interface) (URBI, 2016),

• Microsoft RDS (Robotics Developer Studio) (RDS, 2016).

CHAPTER 1. INTRODUCTION 19

The article concludes remarking MOOS as a strong candidate, as it is open source, runs

on different operating systems, and has strong libraries for AUV and ASV.

In the 2014 RobotX Competition, the challenge was to develop an ASV that was capable

of doing several tasks, and each team provided a technical report. In this challenge the MIT-

Olin team implemented the ASV using the software MOOS-IvP for both sensor interacting

and autonomy (ANDERSON et al., 2014). Communication with the shoreside computer in the

GCS was done using WiFi. In the same competition, the KAIST team integrated GPS at lower

rates and a IMU at higher rates to provide a better localization accuracy (KANG; et al, 2014)

using a different autonomous software.

The works (DJAPIC; NAD, 2010; KEMNA et al., 2011; SIDELEAU; EICKSEDT, 2010) use the MOOS-

IvP software in AUV (Autonomous Underwater Vehicle) with adaptative missions. These

works describe in a more detailed way how MOOS-IvP was integrated in different commer-

cial vehicle.

Brodskiy (BRODSKIY, 2014) describes benefits of a modular approach for cooperative robots

and for robots sharing computationally intensive tasks. The construction of modulars AUV

are shown in (BREGE, 2011) and (SANGEKAR et al., 2008). In (SANGEKAR et al., 2008) it is also

shown the benefits of a distributed hardware architecture.

In (SANTOS et al., 2013) an ASV was implemented and its nautical structure, on-board hard-

ware and sensors were presented. This navigation system has an architecture in which the

ASV only sends telemetry data to the Ground Control Station (GCS) and receives navigation

commands. The GCS uses a custom autonomous navigation software (based in Matlab) for

both the decision-making and the sensor fusion algorithms. The GCS implements an Ex-

tended Kalman Filter algorithm for GPS (Global Position System), Digital Compass and IMU

(Inertial Measurement Unit) fusion. The work presented in (SANTOS et al., 2013) uses a costly

IMU. Due to this architecture, the ASV requires a reliable communication link to run a mis-

sion.

This dissertation presents the work done to develop a low-cost ASV. This work can be

divide in two parts, as it corresponds to two different designs. The first design is an inter-

mediate step towards the final design. The first design shows the work done to extend the

platform first presented in (SANTOS et al., 2013) to use the software MOOS-IvP and lower cost

components. This work started as the authors final year undergraduate project in Electronic

Engineering at ITA (MATTOS, 2014). The second part shows the design of the autonomous

navigation architecture used to make the ASV modular. This architecture benefits from be-

ing easily to adapted to other vehicles and to be used in collaborative missions.

CHAPTER 1. INTRODUCTION 20

1.3 Research Scope

This dissertation concerns with the design of a low-cost ASV system to be used as a basis

for autonomous missions. This work consists of the hardware design for the ASV system and

its software development.

The software development is based on the metaOS MOOS-IvP (MOOS-IVP, 2016)

Sensor fusion algorithms are used to improve localization of the vehicle. Simulation of

missions consisting of several waypoints and virtual obstacles as well as the experimental

results of these missions in real conditions are shown to demonstrate the use of the ASV

system.

1.4 Dissertation Outline

This dissertation is structure as follows:

Chapter 2 describes briefly the MOOS-IvP software. This chapter presents an overview

on the software architecture, its basis and requirements to be used in a ASV. More detailed

information can be found in the official documentation.

Chapter 3 describes the architecture of the ASV system developed in this dissertation.

In this chapter it is also discussed the two designs for the ASV and the benefits of each one.

Description on the electronic hardware and how the software MOOS-IvP is used is also given.

Chapter 4 This section explains in details the several MOOS applications developed in

order to make the ASV work with the software.

Chapter 5 presents and discusses the simulation and experimental results for the devel-

oped ASV.

Chapter 6 concludes the dissertation by making some final remarks and points directions

for future studies.

2 The MOOS-IvP Software

2.1 Introduction

Researchers at MIT, University of Oxford and the Naval Undersea Warfare Center (NUWC)

developed the autonomy framework MOOS-IvP (MOOS-IVP, 2016). MOOS stands for Mission

Oriented Operating Suit (MOOS, 2016) and it is an open-source middleware (a set of libraries

and executables) that handles inter-process communications. IvP stands for Interval Pro-

gramming, and it is a mathematical method for solving multi-objective optimization.

The project is based on the philosophies cited below (MOOS-IVP, 2016). The advantage of

these philosophies is to develop an autonomous vehicle capable of performing several tasks

in a reduced development time.

• Platform Independence: The MOOS-IvP software typically runs on a dedicated com-

puter for autonomy and sensing in the vehicle "payload" section.

• Module Independence: MOOS and the IvP Helm provide two architectures that enable

the autonomy and sensing system to be built from distinct and independent modules.

• Nested Capabilities: MOOS and IvP Helm architectures both allow a system to be ex-

tended without any modifying or recompiling the core, publicly available free software.

The first topic refers to the creating an autonomy software that can be used nearly iden-

tically on vehicles platforms from different manufactures. This is reinforced by the backseat

driver design paradigm. Although the software does not restricts the type of vehicle, it is

mainly used in ASVs and AUVs.

The second topic refers to the ability to create modules that are not dependable. There-

fore modules can be created and updated from different developers without interfering with

the existent modules.

The third topic refers to the ability to extend the software without having to modify its

core. This feature allows the autonomous system to benefit from custom modules.

CHAPTER 2. THE MOOS-IVP SOFTWARE 22

2.2 The backseat driver paradigm

One of the key philosophies of the software MOOS-IvP is the platform independence.

This independence is reinforced by using the backseat driver paradigm. The key idea of the

backseat driver is the separation of the vehicle control and the vehicle autonomy (BENJAMIN

et al., 2013). The main benefit is the decoupling of the platform autonomy system from the

vehicle hardware. Therefore, the vehicle manufacturer can provide navigation and control

system (the frontseat), while the autonomy software computer (the backseat) provides au-

tonomy decisions, such as desired heading, speed, depth and position. How the vehicle

navigates and implements its control system is unspecified by the payload computer. Figure

2.1 represents the backseat driver paradigm.

FIGURE 2.1 – Backseat driver paradigm (MOOS-IVP, 2016).

The communication between the frontseat computer and the backseat computer can be

done by a module that implements the manufacturer communication protocol such as serial

port, ethernet or CAN bus. This module communicates bidirectionally coordinating sensors

data (such as speed, position, heading) and decision commands (desired heading, desired

speed).

2.3 The Mission Oriented Operating Suite - MOOS

The MOOS software is a middleware software for robotics. It is also considered a metaOS

for robotics. It provides a publish-subscribe architecture and communication protocols be-

tween processes (MOOS, 2016). It runs on different operating systems, such as Linux, Mac

OS X and Windows. It is fully developed in C++. However it provides ways to integrate with

other development tools, such as Matlab (MATLAB, 2016) and Python (PYTHON, 2016).

The MOOS software is organized in a star topology, in which the central node is called

the MOOSDB (MOOS Database). The MOOSDB is responsible for coordinating messages

CHAPTER 2. THE MOOS-IVP SOFTWARE 23

between the several other nodes (inter-process communication), the MOOS Applications.

Figure 2.2 represents this star topology.

FIGURE 2.2 – Star topology for the MOOS Software (MOOS-IVP, 2016).

This publish-subscribe architecture does not allow Peer-to-Peer communication between

the MOOS Applications. This restriction reinforces the module independence. By not allow-

ing direct communication between MOOS Aplications the developer is encouraged to follow

the communication pattern using the MOOSDB. A MOOS Application communicates only

with the MOOSDB, requesting information regarding to a certain variable. Also, the MOOS

Application posts all the data it generates only to the MOOSDB. Other applications can re-

quest these data only through the MOOSDB.

A MOOS community is the group of several MOOS Applications and a single MOOSDB.

Usually a single computer (and vehicle) runs only one MOOS community. Different commu-

nities can communicate with each other through special MOOS Applications.

The MOOS community is configured with a configuration file. This file (.moos) specifies

the several MOOS Applications that will be available in the community, as well as configu-

ration parameters of those applications. For specific details on how to use the configuration

file refer to the MOOS-IvP documentation (MOOS-IVP, 2016).

2.4 The IvP helm application

The IvP helm is a MOOS Application that provides a behavior-based autonomy. This

application plugs into a MOOS community and subscribes to receive updates regarding to

any information necessary to make autonomy decisions. It publishes navigation variables,

such as, desired heading, desired speed or desired depth. The helm can be configured to

generate decisions over virtually any user-defined decision space. Figure 2.3 represents this

situation.

CHAPTER 2. THE MOOS-IVP SOFTWARE 24

FIGURE 2.3 – The IvP helm as a MOOS application (MOOS-IVP, 2016).

The IvP helm can be configured with a mission file. This file (.bhv) defines the active be-

haviors in a hierarchical way. This way it is possible to configure a mission to be adaptative,

the active behaviors can change depending on real-time sensors information. The behaviors

therefore, can run simultaneously and can be grouped into sets that are active depending on

conditions. Figure 2.4 represents the hierarchical structure of the MOOS-IvP missions. For

specific details on how to use the mission file refer to the MOOS-IvP documentation (MOOS-

IVP, 2016).

The IvP helm, available from the official SVN repository (MOOS-IVP, 2016), has several

behaviors such as following waypoints, collision avoidance, or to keep the vehicle in a safety

area. However, it is also provides tools that make it easier to develop custom behaviors.

The IvP helm solves the conflicts between behaviors using the IvP solver, a mathematical

programming technique that searches a globally optimal solution for each domain in use.

This technique is fast enough to run in real-time with the vehicle (MOOS-IVP, 2016; BENJAMIN,

2002).

2.5 Remarks

The software MOOS-IvP was selected because it fulfills several requirements for develop-

ing a low-cost ASV. Some of these requirements are:

• it is open source,

• it provides, out-of-the-box, several modules for autonomous vehicles, mainly for ASV

CHAPTER 2. THE MOOS-IVP SOFTWARE 25

FIGURE 2.4 – The hierarchical mission structure using the IvP helm application. In the .bhv
it is possible to declare mission modes that uses a set of behaviors. The IvP solver resolves
possible conflicts (MOOS-IVP, 2016).

and AUV,

• it provides, out-of-the-box, several behaviors capable of performing several autonomy

missions,

• it has a large and active community of users,

• it runs on the Mac OS X and on the Linux Debian-based operating systems,

• it is lightweight and with low libraries dependencies, therefore it is easy to configure,

• it is written in C++, and it is fast enough to run in real-time in embedded vehicles

computers,

• it has an extensive documentation,

• it has collaborative features for ASV and AUV.

Other design philosophies such as the backseat driver, nested capabilities and hierarchi-

cal structure missions facilitates the adoption of this software in low-cost vehicles by reduc-

ing the development cost of the autonomy software of the vehicle.

The MOOS-IvP has an extensive documentation. This chapter was intended to be a brief

introduction to the software. The complete documentation including several lectures and

examples on how to use the software can be found in the MOOS and MOOS-IvP website

(MOOS, 2016; MOOS-IVP, 2016).

3 The Autonomous Surface Vehicle

Hardware Design

3.1 The nautical structure and mathematical model

This work uses a catamaran boat with water wheels driven by DC motors as a propulsion

system. It was developed and modeled in (SANTOS, 2011). The complete derivation of this

model can be found in (SANTOS, 2011). Figure 3.1 shows a photograph of the boat.

FIGURE 3.1 – A photograph of the catamaran boat used in this dissertation. The embedded
hardware is contained inside the metal box.

Bellow is a description of the ASV structure. The ASV uses direct current motors (DC)

attached to the water wheels. The DC motors, (ML,R, motor left and motor right), can only

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 27

have three possible states: forward, off and backward (ML,R = {1,0,°1}). The motors are

driven by a relay H-Bridge. The motor controller uses a lookup table which can be seen

in Table 3.1. The lookup table uses as input variables: the error in position (relative to the

desired position) ±d , and the error in heading (relative to the desired heading) ±√. The

output variables of this table is the motor right state (MR) and the motor left state (ML).

This table was developed intuitively in (SANTOS, 2011). It is can be easily modified to fit

the ASV dynamics, in both the input bounds as well as the output values. In (SANTOS, 2011) a

different table is suggested based on a learning automata algorithm.

TABLE 3.1 – Lookup table for the motor controller

ML,MR 0 m< ±d < 3 m ±d ∏ 3 m
5° < ±√∑ 90° 1,-1 1,0
0° < ±√∑ 5° 0,0 1,1
°5° < ±√∑ 0° 0,0 1,1

°90° < ±√∑ 90° -1,1 0,1

A nonlinear model of the catamaran boat was developed in (SANTOS et al., 2013; SANTOS,

2011). This model is can be represented by Figure 3.2.

The nonlinear model is shown in eq. (3.1),

0

BBBBBBBBBBBBBBBBBB@

ẇz

˙Vbx

˙Vby

Ṗx

Ṗy

√̇

1

CCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBB@

(MR °ML)dFp
1
J ° sign(wz)Kz w 2

z
1
J

wzVby +°sign(Vbx)(ML +MR)Fp
1
m ° sign(Vbx)KxV 2

bx
1
m

°wzVbx ° sign(Vby)KyV 2
by

1
m

Vbx cos(√)°Vby sin√

Vbx sin(√)+Vby cos√

wz

1

CCCCCCCCCCCCCCCCCCA

(3.1)

where:

• Fp is the propulsion force,

• wz is the angular velocity,

• Vbx and Vby are the velocities in the vehicle frame,

• Px and Py are the positions in the local frame,

• √ is the heading angle,

• J the inertial moment,

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 28

y

xPx

Py GC

yb
Vby

Vbx

xb

Dy

Dx

wz

Dz

FIGURE 3.2 – A diagram representing the model of the ASV. This diagram shows the ASV
frame axis, the local frame axis, the velocities and drag forces.

• m the boat mass,

• d is the distance between a water wheel and the center of gravity.

A quadratic model was assumed for the drag forces:

Dx = KxV 2
bx

D y = KyV 2
by

Dz = Kz w 2
z

where Kx , Ky and Kz are the drag forces constants.

Table 3.2 shows the measured values for the boat physical parameters. This parameters

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 29

TABLE 3.2 – Value of the physical parameters

Parameters Value

Ky , Kz 35.12 N s2/m2

Kx 7.025 N s2/m2

m 14.81 Kg

J 3.37 Kg/m2

Fp 1.4 N

d 0.56m

were obtained in experiments as shown in (SANTOS, 2011).

3.2 A first approach to the ASV

This section describes the first attempt to redesign the ASV, to reduce costs, and to inte-

grate with the software MOOS-IvP. This first design was used to demonstrate that the former

autonomous architecture could be integrated with the software MOOS-IvP. This first design

was important to lay the foundations and learn how the software MOOS-IvP behaved in a

simpler architecture. Section 3.3 shows the use of a modular autonomous architecture, with

reduced costs.

Santos (SANTOS et al., 2013) used a navigation system consisting of an ASV and a Ground

Control Station (GCS). In this system, the ASV sends the telemetry data from the Global

Position System (GPS) receiver and the Inertial Measurement Unit (IMU) to the GCS. The

GCS uses a custom autonomous navigation software, developed in Matlab, to implement

the decision-making, control and the sensor fusion algorithms. After processing those data,

the GCS sends back to the ASV motor actuators commands. The communication link be-

tween the ASV and the GCS is a RS-232 radio link. Due to this architecture, the ASV requires

a reliable communication link to run a mission

This first design takes this same approach as a starting point. The ASV hardware was

modified in order to reduce costs. The autonomous navigation software and the sensor fu-

sion algorithms are running in the GCS. The autonomous navigation software is the MOOS-

IvP, detailed in chapter 2. Figure 3.3 shows a diagram that illustrates the AVS system.

3.2.1 Hardware Modifications

The original ASV developed by Santos (SANTOS et al., 2013) used a more costly hardware,

The aim of this first design was to lower the cost of the AVS system and integrate it with the

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 30

pHelm

MOOSDB

ControliSerial

pMarin
eViewe

r

Radio
Modem

RS232 to USB

GPS/IMU data
Control data

Ground Control Station (GCS)

G
C

yb

xb

Boat

Radio
Modem

FIGURE 3.3 – The AVS system: the boat sends telemetry data to the GCS, the GCS process
these data using the software MOOS-IvP and replies with navigation commands.

software MOOS-IvP. Therefore, most of the embedded hardware was redesigned.

The embedded computer was replaced by a popular Arduino Uno R3 Microcontroller.

The IMU and the digital compass were replaced by a lower cost 10-DoF IMU (3 axis digital

compass, 3 axis accelerometer, 3 axis gyroscope and a barometer), the GY-80 (FILIPEFLOP,

2016). The GY-80 is based on the chipsets ADXL345 (accelerometer), L3G4200D (gyroscope),

HMC5883L (compass) and BMP085 (pressure sensor). The communication link with the

GCS is done with the RF Modem SS7-900EXT ICP Das. Due to the high power consumption

of the RF modem, this setup allows to have roughly 1.5 hour of autonomy.

The GCS consists of a computer connected to a RF Modem, an external battery pack for

the RF Modem and a joystick for manual control.

Table 3.3 shows the list of the embedded hardware components and its cost.

Figure 3.4 shows a diagram of the embedded electronic hardware. Figure 3.5 shows a

picture of the real embedded hardware represented in the diagram of Figure 3.4.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 31

TABLE 3.3 – Embedded hardware components embedded for the first design.

Component Price in US$
Ardunio Uno R3 Microcontroller US$ 10
GPS Receveir Globalsat ET-332 US$ 25

IMU GY-80 US$ 20
Relay H-Bridge US$ 5

USB to RS232 converter US$ 5
RF Modem SS7-900EXT ICP Das US$ 100/pair

Sealed battery Unipower 12V 4.5Ah US$ 15

3.2.2 Embedded Software

The embedded software runs on the Arduino Uno R3 Microcontroller. It was developed in

variant of C++ using the Arduino IDE. The embedded software is responsible for command-

ing the motors, interacting with the GPS receiver, the IMU (digital compass, accelerometers

and gyroscope) and receiving and sending data through the RF Modem.

The IMU uses the I2C protocol and the GPS receiver uses an USART with a 9600 baud

rate. The relay H-Bridge (SANTOS, 2011) is controlled with 4 digital TTL signals and the RF

modem uses RS-232 at 9600 baud rate.

The embedded software uses the several libraries. Description and examples on how to

use them can be found in (MARGOLIS, 2011).

• Wire.h: This library is part of the Arduino common libraries. Its main job is to control

the I2C peripheral on the Atmel 328P microcontroller in the Arduino Uno R3.

• SoftwareSerial.h: This library is part of the Arduino common libraries. Its job is to

create a USART interface by software. The Atmel 328P has only one USART peripheral,

and the ASV needs two independent serial interface.

• TinyGPS.h: This library is developed by Arduiniana (ARDUINIANA, 2016). This library is

a GPS NMEA Parser. It tests the checksum of the NMEA sentence and extract several

data in a easy to use object.

• stdlib.h: This library is common to several C/C++ compilers. This version specific

for the 8-bit AVR compiler. This library is used to perform floating point operations in

the 8-bit microcontroller.

• GY80IMU.h: This is a custom made library. This library is responsible for interfacing

with the GY-80 IMU. It is based on the datasheet of the ADXL345 (accelerometer),

L3G4200D (gyroscope), HMC5883L (digital compass) and BMP085 (pressure sensor).

It has several options for calibrating, selecting the scale of the measurements and ex-

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 32

Micro
controller

GPS
Rcv.

H-
Relay
Bridge

Motor
1

Motor
2

Accel.

Gyros.

Compass

I2C Bus

Serial TTL
RF Modem

RS232

12v Battery

Voltage
Regulator

GCS

5V

I/O Pins

FIGURE 3.4 – Diagram of the ASV embedded hardware in the first design. In blue is repre-
sented the embedded hardware. In red the power source. In green the communication to
the GCS.

tracting information from all the chipsets. It was developed in C++ and makes use of

the Wire.h library.

Figure 3.6 represents the embedded software diagram. The main loop runs at approxi-

mately 4Hz, during each loop it activate the motors based on the received data, read the GPS,

IMU and send those data back. At the end of the loop it verifies the communication link, if

signal is lost the boat stops until communication is reestablished. Although the main loop

runs at 4Hz, the GPS runs at 1Hz and between this time it holds the last acquired position.

During the start-up step in Figure 3.6, the accelerometer, the gyroscope, and the digital

compass are calibrated. The GPS is set to use NMEA messages at a frequency 1Hz. Static nav-

igation is also disabled. As the GPS was intended to be used in higher speed vehicles, when

running in lower speeds (less than 2 m/s) it holds the position. Disabling the static naviga-

tion allows the GPS to be used in lower speeds vehicles The peripherals, I2C and USART are

also configured during the start-up routine.

A safety step verifies the communication link. If there is a loss in signal, the ASV stops

until communication is reestablished. This allows the operator to try to reestablish the com-

munication link.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 33

FIGURE 3.5 – Embedded hardware.

3.2.3 The MOOS-IvP software

This subsection describes how the software MOOS-IvP is used in this architecture. In this

first design it was used the MOOS-IvP software version 15.5.

The embedded hardware acts as the frontseat computer. The MOOS-IvP is running in

GCS. The GCS acts as the backseat computer. In this configuration the GCS runs only one

MOOS Community with several MOOS applications. Figure 3.7 represents the backseat driver

paradigm with the MOOS community.

The MOOS Apps used and available in the MOOS-IvP repository are briefly described

below. For more information refer to the MOOS and MOOS-IvP manual (MOOS, 2016) (MOOS-

IVP, 2016).

• MOOSDB: The central MOOS App that coordinates the communication between sev-

eral process.

• pMarineViewer: This MOOS App provides an quick and easy to custom interface to

visualize vehicles and other variables.

• pLogger: Creates a log of the whole mission which can be used to replay and analyze

the mission later.

• pNodeReporter: Creates a custom message to be consumed by the pMarineViewer

App and display the vehicle.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 34

Startup

RF received
commands Motors update

GPS reading

IMU reading

Verify commsStop until comms
reestablished

Send Data through
RF modem

Lost
Signal

FIGURE 3.6 – Arduino embedded software. The software is composed of a single main loop
that controls the motors, reads sensors and sends telemetry data.

The custom MOOS Apps developed are briefly described below. A complete reference

for the custom MOOS applications is given in Chapter 4. The source code for these appli-

cations can be found in the LMI FTP server (ftp://labattmot.ele.ita.br/ele/david/

moos-ivp-extend/).

• iSerial: This MOOS App is responsible for interfacing the GCS computer with the RF

modem. It creates a USB virtual serial port and decodes the data messages sent by the

ASV to the GCS.

• pControl: This MOOS App implements the lookup table (Table 3.1) and it is used to

determine the states of each motor. Its output is transmitted to the iSerial App to be

send to the boat.

• pManual: This MOOS App creates a manual interface to control the boat. The boat

can be controlled by a keyboard or by a joystick controller.

• pGeodesy: This MOOS App is responsible for converting from global to local coor-

dinates. It uses the Earth model WGS-84 and implement the equations presented at

(FARRELL; BARTH, 1999).

• pKalmanSensorFusion: This app implements a GPS, Compass and IMU sensor fusion

using an Extended Kalman Filter. The Extended Kalman Filter used was developed in

(SANTOS et al., 2013).

ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/
ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 35

MOOSDB

pLogger

pHelmIvP

pMarineViewer

pNodeReporter

pManual

pKalmanSensor
Fusion

uKalmanVisual

pGeodesy

iSerialRF
Modem

RF
ModemBoat

Payload Computer
Backseat (GCS)

Vehicle Computer
Frontseat (Boat)

pControl

FIGURE 3.7 – MOOS-IvP Apps. In yellow, the custom MOOS Apps developed for the ASV. In
blue, the MOOS Apps available in the MOOS-IvP repository.

• uKalmanVisual: This app implements a visual interface to observe the Extended Kalman

Filter states. This app helps to easily tune the Extended Kalman Filter.

• uBoatSimulator: Although not present in the Figure 3.7, this app implements the

boat dynamic equations. It helps in simulating the dynamics of the boat and test new

MOOS Apps before deploying.

Figure 3.8 shows how the Kalman Filter is used in conjunction with the MOOS-IvP in the

GCS.

The GCS computer is a Macbook Pro running the Mac OS X 10.10.5 operating system. The

computer uses the processor Intel Core i5 2.4GHz, with 8 GB 1600 MHz DDR3 RAM Memory.

The graphic card is an Intel Iris 1536 MB.

3.2.4 Remarks on the design

As shown in the experimental results in Chapter 5, this design worked well. The ASV

was capable of performing a full mission with the sensor fusion algorithms and different

behaviors using the software MOOS-IvP.

However, the proposed design is not scalable for several collaborative vehicles. Collab-

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 36

ActuatorsBoat
dynamics

Sensors
GPS

Compass
IMU

GPS
abx,aby
wz

comp

Boat

Kalman
Filter pHelmIvp pControl

MOOS-IvP in GCS
Px

Py

ML, MR

FIGURE 3.8 – This block diagram shows how the Kalman Filter is used for the sensor fusion.
The GCS receives GPS, IMU and compass data (through the application iSerial), it processes
those data and outputs the estimated position and heading to the pHelmIvp.

orative vehicles would need a communication network, also using other computers in the

GCS is a costly solution. A distributed approach, with each vehicle running its own auton-

omy software is needed for a multi-vehicle mission.

The navigation is dependable of a reliable communication link with the GCS. A loss in

the communication signal interrupts the mission and in an open environment may result in

the loss of the vehicle.

A significant part of the hardware costs is due to the expensive radio modem. Although

there are cheaper alternatives, they might not be so reliable in longer distances from the GCS.

This first design was needed to test the MOOS-IvP with an architecture that worked well

with this nautical structure (SANTOS et al., 2013).

3.3 The second approach to the ASV: the modular design

This section describes a better architecture for the ASV system. It uses several compo-

nents and software modules from the first design. However, it differs significantly in several

aspects.

One of the main differences of this approach compared to the the first approach is the

presence of the payload computer inside the ASV. This makes it possible to run the MOOS-

IvP software embedded in the ASV. This creates an independence between the ASV and the

GCS.

This design uses a modular approach for ASV. This modular approach allows the vehicles

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 37

to be easily adapted for different situations, such as changes in the payloads and different

sensors combinations. This modular approach also simplifies the deployment of collabora-

tive ASVs missions.

3.3.1 Hardware Modifications

The new design follows closely the backseat driver paradigm in both the software and

electronic hardware architecture. The ASV electronic hardware consists of two separate

parts: the embedded hardware and the payload computer.

The embedded hardware is almost the same as the previous design, and it is responsi-

ble for motor control, power sources and navigation sensors interfacing. This part is the

frontseat.

The payload computer is the backseat computer. It is responsible for navigation deci-

sions and GPS/IMU/Compass sensor fusion algorithms. It is also responsible for interfacing

with new sensors.

Figure 3.9 represents the new ASV design.

Manual Controls
Visualization Data

Camera Feed

pManual

MOOSDB

Kalman
Visual

pMarine
Viewer

pShare
WiFi

Router
Ground Control
Station (GCS)

GC

yb

xb

WiFi
Adapter

Kalman
Sensor
Fusion

MOOSDB

iSerialpHelm

pShare

Serial TTL

ASV

Payload
Computer

FIGURE 3.9 – Block diagram of the AVS system: the ASV and the GCS. Both the GCS and the
ASV use the MOOS-IvP software. Communication between the ASV and the GCS happens
through a WiFi link.

In this new design, the frontseat computer communicates with the backseat computer

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 38

through a USB bus, instead of the radio link. The ASV communicates with the GCS through

a WiFi link. With this new communication link it is possible to add a USB camera and send

real-time video feed from the ASV to the GCS. Due to the lower power consumption of this

new setup, the ASV is capable of performing missions up to 3.5 hours of continuous naviga-

tion without the need of recharging. The GCS was also modified and it consists of a computer

connected to a WiFi router and a joystick for manual control.

Figure 3.10 represents a block diagram of the ASV hardware.

Payload
Computer

Micro
controller

GPS
Rcv.

H-
Relay
Bridge

Motor
1

Motor
2

Accel.

Gyros.

Compass

I2C Bus

Serial TTL

WiFi Adapter

USB Bus

12v Battery

Voltage
Regulator

5v

USB Bus
for extension

USB
Camera

GCS

I/O Pins

FIGURE 3.10 – Block diagram of the AVS hardware. In blue is represented the embedded
hardware, in yellow the payload computer, in red the power source. In green is represented
the GCS.

Table 3.4 shows the list of the ASV hardware components and their cost.

The payload computer (a Raspberry Pi 2) is responsible for the autonomous decision-

making, the sensor fusion algorithms and the ASV control. It runs the MOOS-IvP software.

Also, it is responsible to communicate with the GCS by sending UDP messages through the

USB WiFi adapter.

The payload computer communicates with the microcontroller (frontseat computer) us-

ing a USB bus. The use of a USB bus endorses the modular approach, as it allows an easy

way to customize the payload computer, the communication channel and to add new sen-

sors. This modular approach provides the means for vehicles to be adapted to wide range of

missions. As an example, a USB camera was added to the ASV for surveillance purposes.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 39

TABLE 3.4 – Embedded hardware components embedded

Component Price in US$
Ardunio Uno R3 Microcontroller US$ 10
GPS Receveir Globalsat ET-332 US$ 25

IMU GY-80 US$ 20
Relay H-Bridge US$ 5
Raspberry Pi 2 US$ 30

TP-Link TL-WN8200ND WiFi Receiver US$ 30
Logitech C525 USB Camera US$ 40

Voltage Regulator US$ 5
Sealed battery Unipower 12V 4.5Ah US$ 15

3.3.2 Embedded Software

The embedded software was altered slightly. It uses the same software skeleton as the

previous design and the same libraries for sensor interfacing. However, there is no need to

verify if the communication signal was lost. Also it was modified to send data to the pay-

load computer, instead of the RF modem. Figure 3.11 represents the diagram of the new

embedded software.

Startup

Commands
received Motors update

GPS reading

IMU reading

Send data to the
payload computer

FIGURE 3.11 – Arduino embedded software. The software is composed of a single main loop
that controls the motors, reads the sensors and communicates with the payload computer.

3.3.3 The MOOS-IvP software in the payload computer and in the GCS

In this new design, significant changes occurred in the MOOS-IvP communities. The cus-

tom applications (Chapter 4) were not modified, therefore reducing software development

costs. With this new approach, two MOOS communities were used. One in the payload com-

puter (on-board the ASV) and one in the GCS. Figure 3.12 shows the MOOS communities and

the MOOS Applications used in both the ASV and in the GCS.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 40

Ground Control
Station

MOOSDB

uKalmanVisual

Joystick pManual

pMarineViewer

pLogger

pShare

uFldShoreBroker

pHostInfo

Communication Apps

Payload Computer
Backseat (boat)

MOOSDB

pKalmanSensor
Fusion

pGeodesy

FrontseatiSerial

pControlpHelmIvP

pLogger

pNodeReporter

pShare

uFldNodeBroker

pHostInfo

Communication Apps

WiFi link

FIGURE 3.12 – MOOS-IvP Apps. In the left there is a diagram of the MOOS apps used in
the GCS, in the right the diagram for the MOOS apps used in the payload computer. The
yellow blocks correspond to the custom MOOS Apps developed for the ASV. The blue blocks
correspond to the MOOS Apps available in the MOOS-IvP repository.

3.3.3.1 The software MOOS-IvP in the payload computer

The payload computer (a Raspberry Pi 2) uses a Linux Raspian operating system. In this

second design, it was used the MOOS-IvP software version 15.5.

The MOOS Apps used in the payload computer and available in the official MOOS-IvP

repository (MOOS-IVP, 2016) are briefly described below. For more information refer to the

MOOS and MOOS-IvP manual (MOOS, 2016), (MOOS-IVP, 2016).

• MOOSDB: The central MOOS App that coordinates the communication between sev-

eral process.

• pLogger: Creates a log of the whole mission which can be used to replay and analyze

the mission later.

• pNodeReporter: Creates a custom message to be consumed by the pMarineViewer

App and display the vehicle.

• pShare: This app creates a socket to transmit MOOS messages between MOOS com-

munities running in different machines, such as the ASV and the GCS.

• uFldNodeBroker: A tool for brokering connections between a node (vehicle) with the

shoreside computer (GCS).

• pHostInfo: Discovers and shares the IP address of the machine with the MOOS com-

munity. It is necessary for the uFldShoreBroker and the uFldNodeBroker app.

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 41

The custom MOOS Apps used in the payload computer are briefly described below. A

complete reference for the custom MOOS applications is given in Chapter 4. The source

code for these applications can be found in the LMI FTP server (ftp://labattmot.ele.

ita.br/ele/david/moos-ivp-extend/).

• iSerial: This MOOS App is responsible for interfacing with the microcontroller. It also

decodes the data messages sent from the ASV.

• pControl: This MOOS App implements the lookup table (Table 3.1) and it is used to

determine the states of each motor. Its output is transmitted to the iSerial App to be

sent to the ASV.

• pGeodesy: This MOOS App is responsible for converting from global to local coor-

dinates. It uses the Earth model WGS-84 and implement the equations presented at

(FARRELL; BARTH, 1999).

• pKalmanSensorFusion: This app implements a GPS, Compass and IMU sensor fusion

using an Extended Kalman Filter. The Extended Kalman Filter used was developed in

(SANTOS et al., 2013).

3.3.3.2 The software MOOS-IvP in the GCS

The MOOS Apps used in the GCS computer and available in the MOOS-IvP repository

are briefly described below. For more information refer to the MOOS and MOOS-IvP manual

(MOOS, 2016), (MOOS-IVP, 2016). The MOOS-IvP software version used in the GCS is the 15.5.

• MOOSDB: The central MOOS App that coordinates the communication between sev-

eral process.

• pMarineViewer: This MOOS App provides an quick and easy to custom interface to

visualize vehicles and other variables.

• pLogger: Creates a log of the whole mission which can be used to replay and analyze

the mission later.

• pShare: This app creates a socket to transmit MOOS messages between MOOS com-

munities running in different machines, such as the ASV and the GCS.

• uFldShoreBroker: A tool for brokering connections between the shoreside computer

(GCS) with several nodes (vehicles).

• pHostInfo: Discovers and shares the IP address of the machine with the MOOS com-

munity. It is necessary for the uFldShoreBroker and the uFldNodeBroker app.

ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/
ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 42

Actuators Boat
dynamics

Sensors
GPS

Compass
IMU

MOOS-IvP in backseat computer

Kalman
FilterpHelmIvppControl

ML, MR

Px

Py

GPS
abx,aby
wz

comp

Frontseat microcontroller
ASV

FIGURE 3.13 – This block diagram shows how the Kalman Filter is used for the sensor fusion.
It receives GPS, IMU and compass data (through the application iSerial), it processes those
data and outputs the estimated position and heading to the pHelmIvp.

The custom MOOS Apps used in the GCS are briefly described below. A complete ref-

erence for the custom MOOS applications is given in Chapter 4.T he source code for the

custom applications can be found in the LMI FTP server (ftp://labattmot.ele.ita.br/

ele/david/moos-ivp-extend/).

• pManual: This MOOS App creates a manual interface to control the ASV. The ASV can

be controlled by a keyboard or by a joystick controller.

• uKalmanVisual: This app implements a visual interface to observe the Extended Kalman

Filter states. This app helps to easily tune the Extended Kalman Filter.

• uBoatSimulator: Although not presented in Figure 3.12, this app implements the boat

dynamic equations. It helps simulating the dynamics of the boat and testing new

MOOS Apps before deployment.

Figure 3.13 shows how the Kalman Filter is used in conjunction with the MOOS-IvP in

this modular approach.

The GCS computer is a Macbook Pro running the Mac OS X 10.10.5 operating system. The

computer uses the processor Intel Core i5 2.4GHz, with 8 GB 1600 MHz DDR3 RAM Memory.

The graphic card is an Intel Iris 1536 MB.

3.3.4 The Surveillance Software for the USB Camera

A USB Camera, the Logitech C525 was added to the USB bus in the payload computer. It

is primarily used for monitoring and visualization in real time. It is possible to add computer

ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/
ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/

CHAPTER 3. THE AUTONOMOUS SURFACE VEHICLE HARDWARE DESIGN 43

vision integrated to the MOOS-IvP software using the software library OpenCV (OPENCV,

2016) and (NEWMAN, 2013). However, as the camera is being used for video monitoring, for

simplicity it was used the open source software Motion (MOTION, 2016). This software is eas-

ily to configure and creates a simple video webserver accessible through a specific port. The

GCS can access the camera feed using the IP address of the ASV payload computer.

3.3.5 Remarks on the design

This is the final ASV design for this dissertation. This new ASV design provides a scalable

way to deploy missions with several vehicles regardless of the communication link with the

GCS. The payload computer (backseat) is responsible entirely for the navigation. The GCS

acts only as a monitoring station. Therefore the vehicle can run autonomously even in the

event of a lost of communication signal.

Using this modular approach new sensors can be easily add and the communication link

can be changed in order to meet different requirements. The modular approach also benefits

collaborative missions as several vehicles can be deployed with different payload computers

and sensors without redesigning each vehicle.

Chapter 5 brings experimental results for this design.

4 The developed MOOS-IvP modules

This section describes in details the several MOOS Applications developed for this dis-

sertation. The source code for this modules is available at the ftp://labattmot.ele.ita.

br/ele/david/moos-ivp-extend/ LMI FTP server or upon direct request to the author.

4.1 The pControl Application

This MOOS Application implements the lookup table (Table 3.1) and it is used to deter-

mine the states of each motor.

It compares the current position with the desired position to determine the position er-

ror. It compares the current heading with the desired heading to determine the heading er-

ror. Using this errors this application searches the lookup table and determine what is going

to be the next motors states.

To run smoothly this application should be set to run at a frequency of at least 4Hz.

4.2 The pGeodesy Application

This application is responsible for converting global to local coordinates. It uses the Earth

model WGS-84 and implement the equations presented at (FARRELL; BARTH, 1999). Other

methods and Earth model approximations can be used.

This application receives as input parameters from the community configuration file the

height in respect with sea level. This information can found in several websites, such as,

http://www.daftlogic.com/sandbox-google-maps-find-altitude.htm.

This application uses the ellipsoid parameters found in Table 4.1

To convert from Earth coordinates to Earth Centered Earth Fixed (ECEF) rectangular

frame it is used the following equations

x = (N +h)cos(∏)cos(¡) (4.1)

ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/
ftp://labattmot.ele.ita.br/ele/david/moos-ivp-extend/
http://www.daftlogic.com/sandbox-google-maps-find-altitude.htm

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 45

TABLE 4.1 – Ellipsoid parameters for the conversion from global to local coordinates using
the Earth model WGS-84

Parameter Symbol or Value

Earth semi-major axis a = 6378137 m

Earth semi-minor axis b = 6356752.314245 m

Latitude ∏

Longitude ¡

Altitude relative to sea level h

Earth flattening f = a°b
a

Earth First eccentricity e =
p

f (2° f)

Earth Normal length N (∏) = ap
1°e2 sin2(∏)

y = (N +h)cos(∏)sin(¡) (4.2)

z = (N (1°e2)+h)sin(∏) (4.3)

The input of this system is the latitude (∏), longitude (¡) and altitude (h). The output are the

coordinates in the rectangular ECEF frame (x, y and z) .

Converting from the global ECEF frame to the local frame:

0

BB@

x

y

z

1

CCA

Local

= Re2n ·

0

BB@

x

y

z

1

CCA

ECEF ret

°Re2n ·

0

BB@

x0

y0

z0

1

CCA

ECEF ret

(4.4)

where x0, y0 are z0 the origin coordinates of the local system in the ECEF rectangular frame

and Re2n is the matrix given below:

Re2n =

0

BB@

°si n(∏) 0 cos(∏)

0 1 0

°cos(∏) 0 °sin(∏)

1

CCA ·

0

BB@

°cos(¡) sin(¡) 0

°sin(¡) cos(¡) 0

0 0 1

1

CCA (4.5)

The inputs are the rectangular coordinates in ECEF (previously calculated), the origin of

the system in rectangular ECEF, and the latitude and longitude (in matrix Re2n). The output

is the coordinates in the rectangular local frame.

It is intended to run at a frequency similar to the GPS messages received, therefore, in a

frequency of 4 Hz.

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 46

4.3 The iSerial Application

This MOOS Application is responsible for interfacing the GCS with the RS-232 RF Mo-

dem, as well as, interfacing with the payload computer (in the modular approach). This

application creates a virtual serial port using the USB CDC profile. This application has de-

pendencies in the popular Boost library (BOOST, 2016), specially in the boost::asio. Using

this library it is possible to create a clean code that works on Windows, Mac OS X and Linux

computer.

Beyond creating a virtual serial interface, this application is responsible for decoding

messages received from the ASV. It separates the serial messages into the appropriate MOOS

variables. It also subscribes to the desired motor states to encode in a message that the ASV

decodes.

This application receives as configuration parameters the path to the USB serial port and

the respective baudrate.

An example of a typical message received is:

GPS_LAT=value,GPS_LONG=value,GPS_TIME=value.

The iSerial application decodes this message, converts characters to floating numbers

and post in the appropriate MOOS variables in the MOOSDB.

An example of a typical message sent to the ASV is: M1=value,M2=value. The embedded

software in the ASV microcontroller is responsible for decoding this message and activate

the motors.

Because this application does not work asynchronously (despite the fact it is using the

boost::asio library), this application must be run at high frequency. Otherwise, the process

might be killed by the operating system due to buffer overflow of the USB port.

4.4 The pManual Application

This MOOS App creates a manual interface to control the ASV. Using this application the

ASV can be controlled by using a keyboard or by a joystick controller.

This application does not receive any configuration parameters on the community con-

figuration file (.moos). This application has dependencies on the SDL2 library (SDL2, 2016)

for communicating with a joystick. If a joystick is not connected the ASV still can be con-

trolled with the keyboard. The SDL2 is game library for C++ that has a module for receiving

joystick inputs. This application runs with joystick in Windows, Mac and Linux computer as

long as it has the correct drivers.

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 47

If the manual mode is set, the application disables the IvP Helm and the pControl module

and gives direct command to the actuators.

This application runs on two POSIX threads:

1. The first thread, the main thread is responsible for interfacing with the keyboard. It

puts the terminal in non-canonical mode, therefore it will read a character when it is

pressed. This way is not necessary to hit enter to give the command.

2. The second thread, initiates the SDL2 joystick module and waits for commands. An

axis threshold was set to prevent tiny calibration changes influences the ASV manual

navigation.

The table 4.2 gives a list of all commands available

TABLE 4.2 – Manual commands for the pManual module

Command Keyboard Joystick

Forward w Axis 0

Left-Forward q Axis 0

Right-Forward e Axis 0

Backward x Axis 0

Right-Backward c Axis 0

Left-Backward z Axis 0

Stop s Release Axis 0

Start Manual Control m Button 8

Return Control to IvP Helm n Button 9

This application worked well with the Xbox 360 joystick controller for PC wired and wire-

less, and with Logitech F310 and F510 joystick controllers. This application is intended to be

running at a frequency between 1Hz and 5Hz.

4.5 The pKalmanSensorFusion

This application implements an Extended Kalman Filter Sensor Fusion algorithm in or-

der to aid the localization of the ASV. This application has dependencies in the libraries

eigen3 (EIGEN, 2016) and the boos::odeint (BOOST, 2016). It runs on Windows, Mac and

Linux operating systems.

This Extended Kalman Filter Formulation was proposed by Santos (SANTOS et al., 2013).

His work uses the GPS, Compass and IMU running at the same frequency of 1Hz. The im-

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 48

plemented Kalman filter in this dissertation was modified so the IMU could run at a higher

rate than the GPS.

4.5.1 The Extended Kalman Filter

The new Extended Kalman Filter equations are given below. The complete derivation of

this Extended Kalman Filter can be found in (SANTOS, 2011; SANTOS et al., 2013).

The main idea of the filter is to use the inertial navigation system (INS) model with the

acceleration from the accelerometers and the angular rate from the gyroscope. However,

the inertial units have sources of errors such as a bias and noise. This bias, if integrated over

time, diverges the estimated position from the real position. The Kalman Filter is responsible

for estimate the bias errors. To estimate the bias the Kalman Filter compares the estimated

position of the INS with the GPS and the digital compass inputs.

This formulation uses the state:

X INS(t) = [Vx(t),Vy (t),Px(t),Py (t),√(t)]T

In this state Vx(t) and Vy (t) are the velocities in the local frame. Accelerations from the vehi-

cle frame (abx and aby) to the local frame (ax and ay) can be converted using eqs. (4.6) and

(4.7):

0

BB@
ax(t)

ay (t)

1

CCA=

0

BB@
cos(√(t)) °sin(√(t))

sin(√(t)) cos(√(t))

1

CCA

0

BB@
axb(t)

ayb(t)

1

CCA (4.6)

V̇x(t) = ax(t)

V̇y (t) = ay (t) (4.7)

The true state and the error state vectors are defined as:

X V (t) = [V V
x (t),V V

y (t),PV
x (t),PV

y (t),√V (t)]T

X E (t) = [X INS(t)°X V (t),Bias(t)]T

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 49

where:

Bias = [biasax ,biasay ,biasw z]T

Therefore the Kalman filter state vector has dimension 8x1.

The measurement vector is defined as:

Y INS(t) = [Px(t),Py (t),√(t)]T

This formulation assumes that the measurements of the accelerometer and the gyro-

scope are related to the true values using eq. (4.8).

aINS
xb (t) = axb(t)+biasax(t)+noiseINS

ax (t)

aINS
yb (t) = ayb(t)+biasay (t)+noiseINS

ay (t) (4.8)

w INS
zb (t) = azb(t)+biasw z(t)+noiseINS

w z (t)

The matrices R and Q are:

R =

0

BBBBBB@

æ2
GPSx

0 0

0 æ2
GPSy

0

0 0 æ2
COMP

1

CCCCCCA

Q =

0

BBBBBB@

æ2
Accelx

0 0

0 æ2
Accely

0

0 0 æ2
Gyroz

1

CCCCCCA

The Kalman Filter algorithm was implemented using the following three steps: Step 1:

Initialization The user must provide at the mission configuration file the vectors, X INS
0 , B̂ias0,P0

and the covariance matrix for the GPS, Compass and IMU.

X INS
0 = [Vx(0),Vy (0),Px(0),Py (0),√(0)]T

B̂ias0 = [b̂iasax(0), b̂iasay (0), b̂iasw z(0)]T

P0 = diag{Æ0 · · ·Æ7}

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 50

Step 2: Kalman Filter and INS State Update As this step receives GPS and Compass data,

it is running at 1 Hz.

Y E
k = X INS°

k [3 : 5]°

0

BBBBBB@

P GPS
x,k

P GPS
y,k

√COMP
k

1

CCCCCCA

Gk = P°
k H T [HP°

k H T +Rk]°1

P+
k = [I8x8 °Gk H]P°

k]

X̂ E
k =

0

BB@
05x1

B̂ias°k

1

CCA+Gk Y E
k

X INS+
k = X INS°

k ° X̂ E
k [1 : 5]

B̂ias+ = X E
k [6 : 8]

where Rk is the covariance matrix of the GPS and the digital compass noise.

Step 3: Kalman Filter and INS State Propagation As this step uses the accelerometer and

gyroscope data with the INS model, it is running at 4 Hz. In this step the constant f refers to

the relative frequency to the GPS. In this design f = 4 Hz.

U INS
K =

0

BBBBBB@

aINS
xb,k

aINS
yb,k

w INS
zb,k

1

CCCCCCA
° B̂iask

Ẋ INS(t) = f (X INS(t),U INS(t))

B̂ias°k+1 = B̂ias+k

P°
k+1 = AE

d P+
k [AE

d]T + 1
f

BdQK [B E
d]T +ØP0

where Qk is covariance matrix of the IMU noise.

The community configuration file can set the variances (GPS, compass, accelerometers

and gyroscope variances), the initial P0 matrix, the parameterØ, and if the estimated heading

should be used or the compass raw measurements.

This application is intended to run at a frequency of 4Hz.

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 51

4.5.2 Obtaining the discrete Kalman Filter dynamic matrices

Computing the discrete Kalman Filter dynamic matrices can increase greatly the compu-

tational costs. In (SANTOS et al., 2013), the matrices AE
d and B E

d were obtained using discretiza-

tion function provided in the Matlab (MATLAB, 2016) software. As the MOOS-IvP is running

in C++, it was not possible to use this discretization function. The continuous dynamic AE

and B E matrices (SANTOS et al., 2013) are:

AE =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 Æ °Ø 0

0 0 0 0 0 Ø Æ 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

B =

0

BBBBBBBBBBBBBBB@

Æ °Ø 0

Ø Æ 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

0 0 0

1

CCCCCCCCCCCCCCCA

C =

0

BB@

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1

CCA

D = 0

where:

Æ= cos(xINS
5)

Ø= si n(xINS
5)

The exact matrices AE
d and B E

d are obtained through the formulas:

Ad = e AT

Bd =
ZT

0
e Aødø ·B

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 52

In order to reduce the computational cost, the discrete Kalman Filter dynamic matrices

AE
d and B E

d are obtained using their exact mathematical expression, first obtained with the

symbolic software Wolfram Mathematica 9 (WOLFRAM, 2016). This way it’s not necessary to

discretize each matrices during the loop, thus obtaining a significant performance in time of

the Extended Kalman Filter. The matrices AE and B E (with theÆ and Ø), were inserted in the

exact formulas and the function Integrate was used.

The obtained AE
d and B E

d are:

Ad =

0

BBBBBBBBBBBBBBBB@

1 0 0 0 0 TÆ °TØ 0

0 1 0 0 0 TØ TÆ 0

T 0 1 0 0 T 2Æ
2 °1

2

°
T 2Ø

¢
0

0 T 0 1 0 T 2Ø
2

T 2Æ
2 0

0 0 0 0 1 0 0 T

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1

CCCCCCCCCCCCCCCCA

Bd =

0

BBBBBBBBBBBBBBBB@

TÆ °TØ 0

TØ TÆ 0
T 2Æ

2 °1
2

°
T 2Ø

¢
0

T 2Ø
2

T 2Æ
2 0

0 0 T

0 0 0

0 0 0

0 0 0

1

CCCCCCCCCCCCCCCCA

where:

Æ= cos(xINS
5)

Ø= si n(xINS
5)

4.6 The uKalmanVisual Application

This application implements a visual interface to observe the Extended Kalman Filter

states. This app helps to easily tune the Extended Kalman Filter.

The MOOS software uses a custom TCP message protocol to create inter-process com-

munication. Details on this message protocol is not well documented for the user/developer.

Since developing graphical applications/plotting in C++ takes a great effort or heavily de-

pends on graphical libraries, a different approach was used in this application.

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 53

This application consists of two parts. The first part is the graphical program, responsi-

ble for showing the Kalman Filter plots. This program is completely developed in Python 3,

and uses the TKinter graphical library. The second part is the MOOS application that creates

a communication bridge between the MOOS community and the Python script. The inter-

process communication between those two programs is made by using the message library

ZeroMQ (ZEROMQ, 2016). ZeroMQ is an asynchronous message library, built in C++ with

bindings for several other languages. This message library simplifies inter-process commu-

nication and allows graphical developers to be independent from MOOS developers. Figure

4.1 shows the block diagram for this application

MOOSDB

pHelmIvP

pKalmanSensor
Fusion

uKalmanVisualOther MOOS
Apps

ZeroMQ
Messages

Python Graphical Interface
FIGURE 4.1 – The blocks diagram for the uKalmanVisual application. In this application the
MOOS application acts as a bridge for the Python graphical interface.

The Python application runs on a different thread, called by the MOOS part. It uses the

matplotlib for plotting and TKinter as the graphical interface. Communication between

the two applications is done by a serial data stream using ZeroMQ. Figure 4.2 shows an ex-

ample of these plots using the uKalmanVisual application.

4.7 The uBoatSimulator Application

This application implements the boat dynamic equations, Equation 3.1. To solve the

Ordinary Differential Equations (ODE) it uses the boost::numeric::odeint library. For

simulation purposes it was used the forth order Runge Kutta integration method. Using this

model with lower frequencies (such as 1 to 4 Hz) and with the Euler method diverges.

This application also simulates the GPS and the IMU errors. In the configuration file is

possible to include the variance for the GPS, accelerometers, digital compass and gyroscope.

It is also possible to introduce a constant bias for the accelerometers and for the gyroscope.

This way it is possible to simulate the Kalman Filter and roughly tune it, before deploying.

This model helps to simulate the dynamics of the boat and to test new MOOS applica-

CHAPTER 4. THE DEVELOPED MOOS-IVP MODULES 54

FIGURE 4.2 – A screen capture of the uKalmanVisual application. The red lines represent the
±3æ plots and the black lines represent the error of each variable. If the error stays most of
the time in the ±3æ region for every value it can be said that filter converges.

tions and missions before deployment.

5 Results

This chapter presents the simulation and experimental tests results for the ASV devel-

oped. It is organized as follows.

• Section 5.1 presents the missions performed by the ASV.

• Section 5.2 presents the method used to tune the Extended Kalman Filter.

• Section 5.3 brings simulation result for modeled ASV.

• Section 5.4 brings the experimental results for the first ASV design. This experimental

results uses the same mission file as the simulation results.

• Section 5.5 brings the experimental results for the modular ASV design. This experi-

mental results uses a different mission file compared to the simulation results and the

first design results.

5.1 The missions

The ASV is intended to navigate in river and dam waters in the presence of winds and

light water currents. The waterways might have presence of restricted areas, islands and

other obstacles. Although, the software MOOS-IvP allows the use of the ASV in the presence

of other vehicles, with vehicle collision avoidance, this feature is not explored in this work.

The ASV is not expected to perform high precision navigation tasks, but rather be used as

a basis for a vehicle running missions under different conditions, such as surveillance or

environmental sampling. In the second design, due to the modular configuration, higher

precision sensors can be added to execute specialized tasks.

From the set of behaviors supplied with the MOOS-IvP software three behaviors were

used:

• Waypoints: Given a set of waypoints the boat has to follow these waypoints in the given

order. It is possible to define a capture radius, slip radius and change the waypoints

dynamically.

CHAPTER 5. RESULTS 56

• AvoidObstacle: With this behavior is possible to set a region to avoid, and a safety area

for a virtual collision distance. This behavior was used in a way to define previously

known virtual obstacles during the waypoint task.

• StationKeep: With this behavior the vehicle keeps in the determined area until another

condition is met.

Capture radius is a waypoint parameter that defines the radius of the waypoint accept-

able area. Slip radius is a waypoint parameter that is used in complex missions with conflict-

ing objectives. For more information refer to the official documentation (MOOS-IVP, 2016).

The obstacle radius defines the size of the obstacle. The obstacle safety area is the area

where the weight of the obstacle is increased in the decision space. By increasing this weight,

the vehicle gives high priority to escape this area rather than accomplishing other objectives.

The mission performed in the simulation and in the first design are the same. The ASV is

set to follow the list of waypoints, in the presented order, while avoiding the static obstacles.

In the second design results the list of waypoints and the virtual are different, but the mission

structure remains the same. Table 5.1 presents a summary of the missions waypoints and

obstacles performed by the ASV. Table 5.2 presents the other parameters of the behaviors,

such as capture radius, slip radius and safety area.

TABLE 5.1 – Mission Summary

Mission Waypoints (m) Virtual obstacles (m) Station Keep (m)

Simulation
(40,20), (10,30), (30,60),

(°20,40), (°5,5)

(24,30), (10,10),

(10,55), (°15,15)
(°5,5)

First Design
(40,20), (10,30), (30,60),

(°20,40), (°5,5)

(24,30), (10,10),

(10,55), (°15,15)
(°5,5)

Second Design
(15,15), (°15,30), (15,60),

(35,40), (50,20), (10,°5)

(0,15), (0,30),

(0,45), (20,50), (30,8)
(10,°5)

TABLE 5.2 – Behaviors parameters

Mission Capture Radius (m) Obstacles Radius (m) Safety Area Radius (m)

Simulation 3 3 7

First Design 3 3 7

Second Design 3 2 4

CHAPTER 5. RESULTS 57

5.2 Tuning the Kalman Filter

One of the challenging tasks in the design of the Kalman Filter was tuning it. The tuning

of the Kalman Filter refers to adjusting the matrices P0,R and Q., This section shows how the

Kalman Filter was tuned for both the simulation and experimental results.

The covariances matrices of the Kalman Filter (R and Q) were filled with the covariance

of the measurements from the GPS, IMU and the Compass with the vehicle in a stationary

position. The matrices R and Q were filled as shown in chapter 4. Table 5.3 shows the calcu-

lated covariances.

TABLE 5.3 – Covariance values for the GPS, compass and IMU measurement noise

Variable Covariance
GPSx 0.9 m2

GPSy 0.9 m2

abx 0.1 m2/s4

aby 0.1 m2/s4

wz 0.2 rad2/s2

√ 0.01 rad2

The P0 matrix has eight parameters to tune. This becomes difficult to tune directly in

field. It is easier to pre-tune the Kalman Filter in simulation environment and then fine tune

the Kalman Filter in field.

The convergence of the Kalman Filter can be verified using the application uKalmanVi-

sual. As seen in Chapter 4 this application plots in real-time the errors for each variable and

three times the standard deviation. The red lines represent the ±3æ plots and the black lines

represent the error of each variable. Generally speaking, if the error stays most of the time in

the ±3æ region for every value it can be said that the Kalman Filter converges.

Using the parameter Ø = 0.01 and the uKalmanVisual it is possible to see which vari-

ables are converging and tune them accordingly. After several iterations in simulation it was

obtained pre-tune parameters for the P0 matrix.

Using the pre-tuned parameters as a starting point the vehicles was fine tuned statically.

It was obtained the following parameters for matrix P0:

P0 = diag{10,10,12,12,0.01,10,10,5} (5.1)

This parameters were reintroduced in the simulator to see if the Kalman Filter converges

for the whole simulated mission and to test how the vehicle should behave.

CHAPTER 5. RESULTS 58

5.3 Simulation Results

To simulate the behavior of the ASV the configuration file must be changed. Although

most MOOS applications are used the same way, it is necessary to replace the iSerial and

pGeodesy applications to the uBoatSimulator application. This last application is capable

of simulating the GPS errors and the IMU errors and bias. The mission file (behavior file)

remains unchanged between experimental and simulation results.

The mission used for this simulation results consists of following several waypoints while

avoiding virtual obstacles. After concluding the mission successfully, the vehicle is set to

station-keep at the last waypoint. This condition is set until another mission is given.

Figure 5.1 shows the mission running in the pMarineViewer application. In this figure

it is possible to see how is the simulation environment. You can see the waypoints, some

vehicle variables. With this visual interface is possible to see how the vehicle behaves in a

real-time simulation and test the mission before deployment.

FIGURE 5.1 – A screen capture of the pMarineViewer application. This application allows
the user to see visually how the vehicle performs.

Figure 5.2 shows the obtained simulation results. The simulated vehicle took 540 seconds

to complete the whole mission. The simulated mission does not include possible water cur-

rents and wind conditions. In this graphic, the ASV performed the whole mission, achieving

all the waypoints and avoiding the safety area of the obstacles. It can be seen that the vehicle

still tries to maintain a that minimizes traveled distance.

CHAPTER 5. RESULTS 59

FIGURE 5.2 – Simulation results obtained using the boat model with the uBoatSimulator
application.

Figure 5.3 shows the error plots of the Kalman Filter in the simulation environment. The

graphics represents the values of each variable of the error state:

X E (t) = [Vx(t),Vy (t),Px(t),Py (t),√(t), b̂iasax(t), b̂iasay (t), b̂iasw z(t)]

.

CHAPTER 5. RESULTS 60

FIGURE 5.3 – The Kalman Filter errors in the simulation environment. The blue line repre-
sents the estimated error of the Kalman Filter. The black line represents the standard devia-
tion (±3æ). This figure presents the same information that can be seen in real-time using the
uKalmanVisual application.

CHAPTER 5. RESULTS 61

5.4 Experimental Results for the first design

Using the same mission configuration as in the simulation, the ASV was deployed in the

Aeronautics Institute of Technology (ITA) lake in Brazil. Although there were no water cur-

rents or waves, the boat was submitted to wind conditions.

The vehicle took 700 seconds to complete the whole mission, approximately 40% more

time than the simulated results for the same mission. This happens due to external con-

ditions (such as winds), and the model of the ASV may not correspond exactly to the real

ASV. It is worth noting that although the Extended Kalman filter provides an estimation of

the velocity error, the ASV does not measure the boat velocity. Figure 5.4 shows the obtained

experimental results.

FIGURE 5.4 – Experimental results using the boat in a lake.

As it can be seen from this experimental result, the Extended Kalman Filter worked well

even using a low-cost IMU. One of the advantages of this inertial navigation system is to

provides data between GPS measurements. Therefore the controller can run at 4Hz also,

instead of 1Hz without the Kalman Filter.

Figure 5.5 shows the error plots of the Kalman Filter in the first design experimental re-

sults. The graphics represents the values of each variable of the error state:

X E (t) = [Vx(t),Vy (t),Px(t),Py (t),√(t), b̂iasax(t), b̂iasay (t), b̂iasw z(t)]

. As it can be seen, the errors related to the heading (wz and √) sometimes grows up. One

of the ideas behind the Kalman Filter approach is based on assumptions that measurements

David I. Mattos

CHAPTER 5. RESULTS 62

have a Gaussian distribution, described in the measurement model. Whenever measure-

ments are generated by a different model, outliers appears. This outliers generates large er-

rors inside the Kalman Filter. However, if those spikes are rare the Kalman Filter can recover

quickly. If the spikes start to appear regularly, an outlier-rejection scheme is necessary for a

robust Kalman Filter application (AGAMENNONI et al., 2011; BERMAN, 2014). Outlier-rejection

was not used in this work.

FIGURE 5.5 – The Kalman Filter errors in the first design field experiment. The blue line
represents the estimated error of the Kalman Filter. The black line represents the standard
deviation (±3æ). This figure presents the same information that can be seen in real-time
using the uKalmanVisual application.

CHAPTER 5. RESULTS 63

5.5 Experimental Results for the second (modular) design

For this experimental results, the ASV was also deployed in the Aeronautics Institute of

Technology (ITA) lake in Brazil. The ASV was submitted to wind conditions and rain.

The vehicle was set to perform a different mission from the previous experimental results.

The trajectory consists of different waypoints and virtual obstacles. After concluding the

mission successfully, the vehicle is set to station-keep at the last waypoint. This condition is

kept until another mission is given.

The vehicle took 740 seconds to complete the whole mission. During the execution of the

mission, communication between the vehicle and the GCS was turned off, simulating a loss

of signal. The vehicle kept the mission running and later communication was reestablished.

Figure 5.6 shows the obtained experimental results.

FIGURE 5.6 – Experimental results using the ASV in a lake. The vehicle is set to perform a
mission consisting of several waypoints with virtual obstacles.

Figure 5.7 shows the error plots of the Kalman Filter in the modular design experimental

results.

During this experiment, a real-time video was streamed from the ASV to the GCS using

the software Motion. Figure 5.8 shows a single frame of the video stream. The video lag is

often less than 1 second using 640x480 video resolution.

CHAPTER 5. RESULTS 64

FIGURE 5.7 – The Kalman Filter errors in the second design field experiment. The blue line
represents the estimated error of the Kalman Filter. The black line represents the standard
deviation (±3æ). This figure presents the same information that can be seen in real-time
using the uKalmanVisual application.

CHAPTER 5. RESULTS 65

FIGURE 5.8 – A frame from the video stream using the software Motion. This shows an ex-
ample of a surveillance ASV.

6 Final Remarks

6.1 Conclusion

This dissertation shows the simulation and also the development of an ASV using low-

cost sensors. Two approaches were developed and tested in real world experiments.

The first approach took as a starting point the developed ASV in (SANTOS et al., 2013). It

was designed the embedded hardware and several software modules were developed in or-

der to to adapt the ASV to use MOOS-IvP as the autonomous software. This solution is not

scalable for several collaborative vehicles and it is dependent of a reliable communication

link with the GCS.

A second design was made in order to address the issues in the first design, and in order to

reduce the vehicle costs. The design creates a modular ASV and follows closely the backseat

driver paradigm. The redesigned ASV provides a scalable way to deploy missions with several

vehicles regardless of the communication link with the GCS. The modular approach benefits

collaborative missions as several vehicles can be deployed with different payload computers

and sensors without redesigning each vehicle. As an example, a video camera connected to

the USB bus gives the ASV surveillance capabilities.

Several MOOS-IvP modules were developed and shown in detail in Chapter 4. These

modules gives the ASV manual control, improved localization with sensor fusion, communi-

cation between the backseat computer and the frontseat computer, conversion from geodesy

frame to local frame, motor controller and a simulation model of the ASV.

Simulation and experimental results show the ASV working as desired. Simulation results

are valuable to test and validate missions before deployment. Experimental results were pre-

sented to show that the system operated as designed in both approaches. The use of low-cost

sensors with the sensor fusion algorithms provides the necessary accuracy for navigation in

surveillance missions, avoiding collisions with predetermined obstacles. In the second de-

sign, a new sensor (a camera module) was added, making it possible to transmit a camera

feed to the GCS.

The developed ASV provides a scalable way to deploy missions with several vehicles re-

CHAPTER 6. FINAL REMARKS 67

gardless of the communication link with the GCS. The modular approach benefits collab-

orative missions as several vehicles can be deployed with different payload computers and

sensors without redesigning each vehicle.

6.2 Future Works

A possible line of research is to investigate the use of a GPS receiver with a higher output

data frequency, such as 10Hz, and with a real-time kinematic correction (GPS-RTK).

Real Time Kinematic is a global position technique that relies on a precise reference sta-

tion to provide real-time corrections. The GPS needs to be in the reference station area. The

reference station measures the phase o the signal’s carrier wave and provides over the in-

ternet real-time corrections. With these corrections it is possible to obtain centimeter-level

accuracy. This kind of technique would work well in Brazil due to the number of reference

stations available. Brazil has 95 reference stations in a network that is called RBMC-IP (Rede

Brasileira de Monitoramento Contínuo de Sistemas GNSS em tempo real) (RBMC, 2016). This

service provides GPS corrections for Differential GPS and for GPS-RTK using a RTMC net-

work protocol. This service is provided by the Brazilian Government without costs to the

user.

This kind of solution would provide better accuracy for missions that require a precise lo-

calization. However, improving accuracy demands more costly sensors. A low-cost solution

using open source software is presented at (TAKASU; YASUDA, 2009).

Other lines of research can investigate the application of other payload sensors such as

water quality sensors, DVL (Doppler Velocity Logger) sensors, SONAR modules, LIDAR and

the use of vision-aided navigation for areas were GPS signals are limited. The use of camera

aided navigation can be useful in areas that demands high precision navigation and have

visual landmarks, such as automatic docking.

Bibliography

AGAMENNONI, G.; NIETO, J. I.; NEBOT, E. M. An Outlier-Robust Kalman Filter. no 2006, p.
1551–1558, 2011.

ANDERSON, A.; HOWE, T.; RYPKEMA, e. a. Team MIT-Olin. RobotX Journal Paper, no
October, 2014.

ANTAQ. 2007. Available from Internet: <http://www.antaq.gov.br/portal/>. Cited: Jan 26.
2016.

ARDUINIANA. 2016. Available from Internet: <http://arduiniana.org/libraries/tinygps/>.
Cited: Jan 26. 2016.

ASVGLOBAL. 2016. Available from Internet:
<http://asvglobal.com/products/commercial/>. Cited: Jan 26. 2016.

AUTOMARINESYS. 2016. Available from Internet:
<http://www.automarinesys.com/datamaran/>. Cited: Jan 26. 2016.

BENJAMIN, M. Interval programming: a multi-objective optimization model for
autonomous vehicle control. Thesis (Doctorate), 2002.

BENJAMIN, M.; SCHMIDT, H.; NEWMAN, P.; LEONARD, J. An Overview of MOOS-IvP and a
Users Guide to the IvP Helm - Release 13.5. 2013.

BERMAN, Z. Outliers rejection in Kalman filtering - Some new observations. In: Record -
IEEE PLANS, Position Location and Navigation Symposium. [S.l.: s.n.], 2014. p. 1008–1013.
ISBN 9781479933204.

BLUEFIN. 2016. Available from Internet: <http://www.bluefinrobotics.com/>. Cited: Jan
26. 2016.

BOOST. 2016. Available from Internet: <https://www.boost.org//>. Cited: Jan 26. 2016.

BREGE, E. D. Design and Construction of a Low Cost, Modular Autonomous Underwater
Vehicle. Thesis (Doctorate) — Massachussets Institute of Technology, 2011.

BRODSKIY, Y. Robust autonomy for interactive robots. [S.l.: s.n.], 2014. ISBN
9789036536202.

CLEARPATH. 2016. Available from Internet:
<http://www.clearpathrobotics.com/kingfisher-bathymetry-unmanned-surface-vessel/>.
Cited: Jan 26. 2016.

http://www.antaq.gov.br/portal/
http://arduiniana.org/libraries/tinygps/
http://asvglobal.com/products/commercial/
http://www.automarinesys.com/datamaran/
http://www.bluefinrobotics.com/
http://www.clearpathrobotics.com/kingfisher-bathymetry-unmanned-surface-vessel/

BIBLIOGRAPHY 69

DJAPIC, V.; NAD, D. Using collaborative autonomous vehicles in mine countermeasures.
OCEANS’10 IEEE Sydney, OCEANSSYD 2010, 2010.

EIGEN. 2016. Available from Internet: <https://www.eigen.tuxfamily.org//>. Cited: Jan 26.
2016.

ERSP. 2016. Available from Internet: <http://www.engino.com/robotics.html>. Cited: Jan
26. 2016.

FARRELL, J.; BARTH, M. The Global Positioning System and Inertial Navigation. [S.l.: s.n.],
1999.

FILIPEFLOP. 2016. Available from Internet: <http://www.filipeflop.com/pd-123084-sensor-
gy-80-10-dof-acelerometro-giroscopio-magnetometro-barometro.html>. Cited: Fev 20.
2016.

KANG, M.; et al, S. K. Team KAIST. RobotX Journal Paper, p. 1–14, 2014.

KEMNA, S.; HAMILTON, M. J.; HUGHES, D. T.; LEPAGE, K. D. Adaptive autonomous
underwater vehicles for littoral surveillance: The GLINT10 field trial results. Intelligent
Service Robotics, v. 4, no 4, p. 245–258, 2011. ISSN 1861-2776.

MADDEN, C. An Evaluation of Potential Operating Systems for Autonomous Underwater
Vehicles. 2013.

MARGOLIS, M. Arduino cookbook. [S.l.]: O’Reilly Media, 2011. ISBN 0636920022244.

MATLAB. 2016. Available from Internet: <http://www.mathworks.com/products/matlab>.
Cited: Jan 26. 2016.

MATTOS, D. I. Implementaco do software MOOS-IvP em um barco Autonomo. 2014.

MOOS. 2016. Available from Internet:
<http://www.robots.ox.ac.uk/˜mobile/MOOS/wiki/pmwiki.php/Main/HomePage>. Cited:
Jan 26. 2016.

MOOS-IVP. 2016. Available from Internet: <http://www.moos-ivp.org/>. Cited: Jan 26.
2016.

MOTION. 2016. Available from Internet:
<http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome>. Cited: Jan 26. 2016.

NEWMAN, P. A MOOS-V10 Tutorial. p. 1–29, 2013.

OPENCV. 2016. Available from Internet: <http://opencv.org/>. Cited: Jan 26. 2016.

PLAYER. 2016. Available from Internet: <http://playerstage.sourceforge.net/>. Cited: Jan
26. 2016.

PYTHON. 2016. Available from Internet: <http://www.python.org>. Cited: Jan 26. 2016.

RBMC. 2016. Available from Internet:
<http://www.ibge.gov.br/home/geociencias/geodesia/rbmc/ntrip/>. Cited: Fev 20. 2016.

http://www.engino.com/robotics.html
http://www.filipeflop.com/pd-123084-sensor-gy-80-10-dof-acelerometro-giroscopio-magnetometro-barometro.html
http://www.filipeflop.com/pd-123084-sensor-gy-80-10-dof-acelerometro-giroscopio-magnetometro-barometro.html
http://www.mathworks.com/products/matlab
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/HomePage
http://www.moos-ivp.org/
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
http://opencv.org/
http://playerstage.sourceforge.net/
http://www.python.org
http://www.ibge.gov.br/home/geociencias/geodesia/rbmc/ntrip/

BIBLIOGRAPHY 70

RDS. 2016. Available from Internet:
<https://msdn.microsoft.com/en-us/library/bb483024.aspx>. Cited: Jan 26. 2016.

ROS. 2016. Available from Internet: <http://www.ros.org//>. Cited: Jan 26. 2016.

SANGEKAR, M.; CHITRE, M.; KOAY, T. B. Hardware architecture for a modular autonomous
underwater vehicle STARFISH. Oceans 2008, p. 1–8, 2008.

SANTOS, D. S. Projeto e Construção de um Barco Inteligente com Integração INS/GPS e
Bússola. Thesis (Doctorate) — Instituto Tecnológico de Aeronáutica, 2011.

SANTOS, D. S.; NASCIMENTO Jr., C. L.; CUNHA, W. C. Autonomous navigation of a small
boat using IMU/GPS/digital compass integration. SysCon 2013 - 7th Annual IEEE
International Systems Conference, Proceedings, p. 468–474, 2013.

SDL2. 2016. Available from Internet: <https://www.libsdl.org//>. Cited: Jan 26. 2016.

SETO, M. Marine Robot Autonomy. New York, NY: Springer New York, 2012. ISBN
978-1-4614-5658-2.

SIDELEAU, S. R.; EICKSEDT, D. P. The backseat control architecture for autonomous robotic
vehicles: a case study with the Iver2 AUV. Marine technology society journal, v. 44, no 4, p.
42–54, 2010.

TAKASU, T.; YASUDA, A. Development of the low-cost RTK-GPS receiver with an open
source program package RTKLIB. International Symposium on GPS/GNSS, 2009.

URBI. 2016. Available from Internet: <http://www.gostai.com/products/urbi/>. Cited: Jan
26. 2016.

WOLFRAM. 2016. Available from Internet: <https://www.wolfram.com/mathematica/>.
Cited: Jan 26. 2016.

ZEROMQ. 2016. Available from Internet: <http://www.zeromq.org>. Cited: Jan 26. 2016.

http://www.ros.org//
http://www.gostai.com/products/urbi/
http://www.zeromq.org

FOLHA DE REGISTRO DO DOCUMENTO

1. CLASSIFICAÇÃO/TIPO 2. DATA 3. DOCUMENTO Nº 4. Nº DE PÁGINAS

DM 25 de março de 2015 DCTA/ITA/TC-018/2015 70

5. TÍTULO E SUBTÍTULO:

Development of a low-cost Autonomous Surface Vehicle using the software MOOS-IvP

6. AUTOR(ES):

David Issa Mattos

7. INSTITUIÇÃO(ÕES)/ÓRGÃO(S) INTERNO(S)/DIVISÃO(ÕES):

Instituto Tecnológico de Aeronáutica – Divisão de Engenharia Eletrônica – ITA/IEM

8. PALAVRAS-CHAVE SUGERIDAS PELO AUTOR:

Autonomous Surface Vehicle; Sensor Fusion; Autonomous Navigation

9. PALAVRAS-CHAVE RESULTANTES DE INDEXAÇÃO:

Autonomous Surface Vehicle; Sensor Fusion; Autonomous Navigation

10. APRESENTAÇÃO: (X) Nacional () Internacional
ITA, São José dos Campos. Curso de Mestrado. Programa de Pós-Graduação em Engenharia Eletrônica e Ciência
da Computação. Área de Dispositivos e Sistemas Eletrônicos. Orientador: Prof. Dr. Cairo Lúcio Nascimento Júnior.
Coorientador: Prof. Dr. Douglas Soares dos Santos. Defesa em 05/03/2015. Publicada em 25/03/2015.
11. RESUMO:

Esse trabalho descreve uma implementação de baixo custo de um veículo autônomo de superfície. Esse veículo utiliza
um software de decisão por comportamento, o MOOS-IvP. A plataforma utilizada é um barco tipo catamarã, com dois
motores de corrente contínua como sistema de propulsão. Duas abordagens foram feitas e ambas são apresentadas e
discutidas neste trabalho.
Na primeira abordagem foram embarcados no veículo uma placa de processamento com um microcontrolador da
família Arduino, um sensor inercial de baixo custo composto por acelerômetros, giroscópios e magnetômetros, um
receptor GPS e um rádio-modem serial. O barco comunica-se com a estação de controle em terra enviando dados de
telemetria e recebendo comandos de navegação para os motores. A estação de controle em terra utiliza o software
MOOS-IvP para implementar os procedimentos de navegação autônoma e os algoritmos de fusão sensorial utilizando
o GPS e os sensores inerciais.
Na segunda abordagem algumas modificações foram feitas no hardware embarcado no veículo. Foram adicionados
um microcomputador de baixo custo (Raspberry Pi 2), um adaptador WiFi e uma câmera USB para vigilância. Tam-
bém foi retirado o rádio-modem serial. Nesta abordagem a principal diferença é que os procedimentos de navegação
autônoma e os algoritmos de fusão sensorial estão embarcados. Dessa forma o veículo é capaz de continuar a missão
mesmo com a perda de sinal com a estação de controle em terra. Apesar do barco não depender da estação de controle
em terra para operação, foi utilizado uma estação para inicializar as missões e possibilitar controle manual remoto do
veículo. O computador embarcado utiliza o MOOS-IvP para implementar a navegação autônoma e os algoritmos de
fusão sensorial. A estação em terra utiliza o software MOOS-IvP para receber os dados de telemetria do barco e en-
viar comandos. A abordagem visa a criação de um sistema modular, possibilitando que o sistema seja expandido e
modificado para atender aos requisitos próprios de cada tipo de missão.
Simulações demonstrando a viabilidade das missões, utilização e ajuste dos algoritmos de fusão sensorial são apresen-
tadas e discutidas. Resultados experimentais do veículo, em condições reais, em ambas as abordagens para missões
de seguimento de caminho na presença de obstáculos virtuais são apresentados e discutidos.

12. GRAU DE SIGILO:

(X) OSTENSIVO () RESERVADO () CONFIDENCIAL () SECRETO

	Face Page
	Cataloging-in-Publication
	Dissertation Committee:
	Dedication
	Acknowledgments
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	List of Symbols
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Research Scope
	1.4 Dissertation Outline

	2 The MOOS-IvP Software
	2.1 Introduction
	2.2 The backseat driver paradigm
	2.3 The Mission Oriented Operating Suite - MOOS
	2.4 The IvP helm application
	2.5 Remarks

	3 The Autonomous Surface Vehicle Hardware Design
	3.1 The nautical structure and mathematical model
	3.2 A first approach to the ASV
	3.2.1 Hardware Modifications
	3.2.2 Embedded Software
	3.2.3 The MOOS-IvP software
	3.2.4 Remarks on the design

	3.3 The second approach to the ASV: the modular design
	3.3.1 Hardware Modifications
	3.3.2 Embedded Software
	3.3.3 The MOOS-IvP software in the payload computer and in the GCS
	3.3.4 The Surveillance Software for the USB Camera
	3.3.5 Remarks on the design

	4 The developed MOOS-IvP modules
	4.1 The pControl Application
	4.2 The pGeodesy Application
	4.3 The iSerial Application
	4.4 The pManual Application
	4.5 The pKalmanSensorFusion
	4.5.1 The Extended Kalman Filter
	4.5.2 Obtaining the discrete Kalman Filter dynamic matrices

	4.6 The uKalmanVisual Application
	4.7 The uBoatSimulator Application

	5 Results
	5.1 The missions
	5.2 Tuning the Kalman Filter
	5.3 Simulation Results
	5.4 Experimental Results for the first design
	5.5 Experimental Results for the second (modular) design

	6 Final Remarks
	6.1 Conclusion
	6.2 Future Works

	Bibliography
	Folha de Registro do Documento

